Simulated Sample from Normal Distribution
The data set is used to understand the sampling variation of the score function. The simulated data is available in Pawitan (2001).
data(ns)
A data frame with 10 observations on the following 20 variables.
Sample.1
a numeric vector
Sample.2
a numeric vector
Sample.3
a numeric vector
Sample.4
a numeric vector
Sample.5
a numeric vector
Sample.6
a numeric vector
Sample.7
a numeric vector
Sample.8
a numeric vector
Sample.9
a numeric vector
Sample.10
a numeric vector
Sample.11
a numeric vector
Sample.12
a numeric vector
Sample.13
a numeric vector
Sample.14
a numeric vector
Sample.15
a numeric vector
Sample.16
a numeric vector
Sample.17
a numeric vector
Sample.18
a numeric vector
Sample.19
a numeric vector
Sample.20
a numeric vector
Pawitan, Y. (2001). In All Likelihood. Oxford Science Publications.
Pawitan, Y. (2001). In All Likelihood. Oxford Science Publications.
library(stats4) data(ns) x <- ns[,1] nlogl <- function(mean,sd) { -sum(dnorm(x,mean=mean,sd=sd,log=TRUE)) } norm_mle <- mle(nlogl,start=list(mean=median(x),sd=IQR(x)),nobs=length(x)) summary(norm_mle)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.