Transportation Equipment Manufacturing Data
Statewide data on transportation equipment manufacturing for 25 US states.
data("Equipment")
A data frame containing 25 observations on 4 variables.
Aggregate output, in millions of 1957 dollars.
Capital input, in millions of 1957 dollars.
Aggregate labor input, in millions of man hours.
Number of firms.
Journal of Applied Econometrics Data Archive.
Online complements to Greene (2003), Table F9.2.
Greene, W.H. (2003). Econometric Analysis, 5th edition. Upper Saddle River, NJ: Prentice Hall.
Zellner, A. and Revankar, N. (1969). Generalized Production Functions. Review of Economic Studies, 36, 241–250.
Zellner, A. and Ryu, H. (1998). Alternative Functional Forms for Production, Cost and Returns to Scale Functions. Journal of Applied Econometrics, 13, 101–127.
## Greene (2003), Example 17.5 data("Equipment") ## Cobb-Douglas fm_cd <- lm(log(valueadded/firms) ~ log(capital/firms) + log(labor/firms), data = Equipment) ## generalized Cobb-Douglas with Zellner-Revankar trafo GCobbDouglas <- function(theta) lm(I(log(valueadded/firms) + theta * valueadded/firms) ~ log(capital/firms) + log(labor/firms), data = Equipment) ## yields classical Cobb-Douglas for theta = 0 fm_cd0 <- GCobbDouglas(0) ## ML estimation of generalized model ## choose starting values from classical model par0 <- as.vector(c(coef(fm_cd0), 0, mean(residuals(fm_cd0)^2))) ## set up likelihood function nlogL <- function(par) { beta <- par[1:3] theta <- par[4] sigma2 <- par[5] Y <- with(Equipment, valueadded/firms) K <- with(Equipment, capital/firms) L <- with(Equipment, labor/firms) rhs <- beta[1] + beta[2] * log(K) + beta[3] * log(L) lhs <- log(Y) + theta * Y rval <- sum(log(1 + theta * Y) - log(Y) + dnorm(lhs, mean = rhs, sd = sqrt(sigma2), log = TRUE)) return(-rval) } ## optimization opt <- optim(par0, nlogL, hessian = TRUE) ## Table 17.2 opt$par sqrt(diag(solve(opt$hessian)))[1:4] -opt$value ## re-fit ML model fm_ml <- GCobbDouglas(opt$par[4]) deviance(fm_ml) sqrt(diag(vcov(fm_ml))) ## fit NLS model rss <- function(theta) deviance(GCobbDouglas(theta)) optim(0, rss) opt2 <- optimize(rss, c(-1, 1)) fm_nls <- GCobbDouglas(opt2$minimum) -nlogL(c(coef(fm_nls), opt2$minimum, mean(residuals(fm_nls)^2)))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.