Check Convergence of Fitted Model
This function checks the convergence information contained in models of various classes.
checkConv(mod, ...) ## S3 method for class 'betareg' checkConv(mod, ...) ## S3 method for class 'clm' checkConv(mod, ...) ## S3 method for class 'clmm' checkConv(mod, ...) ## S3 method for class 'glm' checkConv(mod, ...) ## S3 method for class 'glmmTMB' checkConv(mod, ...) ## S3 method for class 'hurdle' checkConv(mod, ...) ## S3 method for class 'lavaan' checkConv(mod, ...) ## S3 method for class 'maxlikeFit' checkConv(mod, ...) ## S3 method for class 'merMod' checkConv(mod, ...) ## S3 method for class 'lmerModLmerTest' checkConv(mod, ...) ## S3 method for class 'multinom' checkConv(mod, ...) ## S3 method for class 'nls' checkConv(mod, ...) ## S3 method for class 'polr' checkConv(mod, ...) ## S3 method for class 'unmarkedFit' checkConv(mod, ...) ## S3 method for class 'zeroinfl' checkConv(mod, ...)
mod |
an object containing the output of a model of the classes mentioned above. |
... |
additional arguments passed to the function. |
This function checks the element of a model object that contains the
convergence information from the optimization function. The function
is currently implemented for models of classes betareg
,
clm
, clmm
, glm
, glmmTMB
, hurdle
,
lavaan
, maxlikeFit
, merMod
,
lmerModLmerTest
, multinom
, nls
, polr
,
unmarkedFit
, and zeroinfl
. The function is particularly
useful for functions with several groups of parameters, such as those
of the unmarked
package (Fiske and Chandler, 2011).
checkConv
returns a list with the following components:
converged |
a logical value indicating whether the algorithm converged or not. |
message |
a string containing the message from the optimization function. |
Marc J. Mazerolle
Fiske, I., Chandler, R. (2011) unmarked: An R Package for fitting hierarchical models of wildlife occurrence and abundance. Journal of Statistical Software 43, 1–23.
##example modified from ?pcount ## Not run: if(require(unmarked)){ ##Simulate data set.seed(3) nSites <- 100 nVisits <- 3 ##covariate x <- rnorm(nSites) beta0 <- 0 beta1 <- 1 ##expected counts lambda <- exp(beta0 + beta1*x) N <- rpois(nSites, lambda) y <- matrix(NA, nSites, nVisits) p <- c(0.3, 0.6, 0.8) for(j in 1:nVisits) { y[,j] <- rbinom(nSites, N, p[j]) } ## Organize data visitMat <- matrix(as.character(1:nVisits), nSites, nVisits, byrow=TRUE) umf <- unmarkedFramePCount(y=y, siteCovs=data.frame(x=x), obsCovs=list(visit=visitMat)) ## Fit model fm1 <- pcount(~ visit ~ 1, umf, K=50) checkConv(fm1) } ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.