Extract Predictors from Candidate Model List
This function extracts the predictors used in candidate models. The
function is currently implemented for glm
, glmmTMB
,
gls
, lm
, lme
, merMod
,
lmerModLmerTest
, rlm
, survreg
object classes that
are stored in a list as well as various models of unmarkedFit
classes.
extractX(cand.set, ...) ## S3 method for class 'AICaov.lm' extractX(cand.set, ...) ## S3 method for class 'AICglm.lm' extractX(cand.set, ...) ## S3 method for class 'AICglmmTMB' extractX(cand.set, ...) ## S3 method for class 'AIClm' extractX(cand.set, ...) ## S3 method for class 'AICgls' extractX(cand.set, ...) ## S3 method for class 'AIClme' extractX(cand.set, ...) ## S3 method for class 'AICglmerMod' extractX(cand.set, ...) ## S3 method for class 'AIClmerMod' extractX(cand.set, ...) ## S3 method for class 'AIClmerModLmerTest' extractX(cand.set, ...) ## S3 method for class 'AICrlm.lm' extractX(cand.set, ...) ## S3 method for class 'AICsurvreg' extractX(cand.set, ...) ## S3 method for class 'AICunmarkedFitOccu' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitColExt' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuRN' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitPCount' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitPCO' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitDS' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGDS' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuFP' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitMPois' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGMM' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGPC' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuMulti' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuMS' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuTTD' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitMMO' extractX(cand.set, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitDSO' extractX(cand.set, parm.type = NULL, ...)
cand.set |
a list storing each of the models in the candidate model set. |
parm.type |
this argument specifies the parameter type on which
the predictors will be extracted and is only relevant for models of
|
... |
additional arguments passed to the function. |
The candidate models must be stored in a list. The results of
extractX
are useful in preparing a newdata
data frame to use in computing model-averaged predictions with
modavgPred
or differences between groups with
modavgEffect
(Burnham and Anderson 2002, Anderson 2008, Burnham
et al. 2011).
extractX
returns an object of class extractX
with the
following components:
predictors |
a character vector of the names of the predictors included in the model, excluding the intercept term. |
data |
a data frame or, in the case of |
Marc J. Mazerolle
Anderson, D. R. (2008) Model-based Inference in the Life Sciences: a primer on evidence. Springer: New York.
Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical information-theoretic approach. Second edition. Springer: New York.
Burnham, K. P., Anderson, D. R., Huyvaert, K. P. (2011) AIC model selection and multimodel inference in behaviorial ecology: some background, observations and comparisons. Behavioral Ecology and Sociobiology 65, 23–25.
Mazerolle, M. J. (2006) Improving data analysis in herpetology: using Akaike's Information Criterion (AIC) to assess the strength of biological hypotheses. Amphibia-Reptilia 27, 169–180.
Pinheiro, J. C., Bates, D. M. (2000). Mixed-effects Models in S and S-PLUS. Springer Verlag: New York.
Royle, J. A. (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics 60, 108–115.
##example from subset of models in Table 1 in Mazerolle (2006) data(dry.frog) Cand.models <- list( ) Cand.models[[1]] <- lm(log_Mass_lost ~ Shade + Substrate + cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[2]] <- lm(log_Mass_lost ~ Shade + Substrate + cent_Initial_mass + Initial_mass2 + Shade:Substrate, data = dry.frog) Cand.models[[3]] <- lm(log_Mass_lost ~ cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[4]] <- lm(log_Mass_lost ~ Shade + cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[4]] <- lm(log_Mass_lost ~ Shade + cent_Initial_mass + Initial_mass2, data = dry.frog) Cand.models[[5]] <- lm(log_Mass_lost ~ Substrate + cent_Initial_mass + Initial_mass2, data = dry.frog) ##assign names names(Cand.models) <- paste(1:length(Cand.models)) ##extract predictors from candidate model set orig.data <- extractX(cand.set = Cand.models) orig.data str(orig.data) ## Not run: ##model-averaged prediction with original variables modavgPred(Cand.models, newdata = orig.data$data) ## End(Not run) ##example of model-averaged predictions from N-mixture model (e.g., Royle 2004) ##modified from ?pcount ##each variable appears twice on lambda in the models ## Not run: require(unmarked) data(mallard) mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site, obsCovs = mallard.obs) ##set up models so that each variable on abundance appears twice fm.mall.one <- pcount(~ ivel + date ~ length + forest, mallardUMF, K = 30) fm.mall.two <- pcount(~ ivel + date ~ elev + forest, mallardUMF, K = 30) fm.mall.three <- pcount(~ ivel + date ~ length + elev, mallardUMF, K = 30) fm.mall.four <- pcount(~ ivel + date ~ 1, mallardUMF, K = 30) ##model list Cands <- list(fm.mall.one, fm.mall.two, fm.mall.three, fm.mall.four) names(Cands) <- c("length + forest", "elev + forest", "length + elev", "null") ##extract predictors on lambda lam.dat <- extractX(cand.set = Cands, parm.type = "lambda") lam.dat str(lam.dat) ##extract predictors on detectability extractX(cand.set = Cands, parm.type = "detect") ##model-averaged predictions on lambda ##extract data siteCovs <- lam.dat$data$siteCovs ##create vector of forest values forest <- seq(min(siteCovs$forest), max(siteCovs$forest), length.out = 40) dframe <- data.frame(forest = forest, length = mean(siteCovs$length), elev = mean(siteCovs$elev)) modavgPred(Cands, parm.type = "lambda", newdata = dframe) detach(package:unmarked) ## End(Not run) ##example of model-averaged abundance from distance model ## Not run: require(unmarked) data(linetran) #example from ?distsamp ltUMF <- with(linetran, { unmarkedFrameDS(y = cbind(dc1, dc2, dc3, dc4), siteCovs = data.frame(Length, area, habitat), dist.breaks = c(0, 5, 10, 15, 20), tlength = linetran$Length * 1000, survey = "line", unitsIn = "m") }) ## Half-normal detection function. Density output (log scale). No covariates. fm1 <- distsamp(~ 1 ~ 1, ltUMF) ## Halfnormal. Covariates affecting both density and and detection. fm2 <- distsamp(~area + habitat ~ habitat, ltUMF) ## Hazard function. Covariates affecting both density and and detection. fm3 <- distsamp(~area + habitat ~ habitat, ltUMF, keyfun="hazard") ##assemble model list Cands <- list(fm1, fm2, fm3) ##model-average predictions on abundance extractX(cand.set = Cands, parm.type = "lambda") detach(package:unmarked) ## End(Not run) ##example using Orthodont data set from Pinheiro and Bates (2000) ## Not run: require(nlme) ##set up candidate models m1 <- gls(distance ~ age, correlation = corCompSymm(value = 0.5, form = ~ 1 | Subject), data = Orthodont, method = "ML") m2 <- gls(distance ~ 1, correlation = corCompSymm(value = 0.5, form = ~ 1 | Subject), data = Orthodont, method = "ML") ##assemble in list Cand.models <- list("age effect" = m1, "null model" = m2) ##model-averaged predictions extractX(cand.set = Cand.models) detach(package:nlme) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.