Compute Model-averaged Effect Sizes (Multimodel Inference on Group Differences)
This function model-averages the effect size between two groups defined by a categorical variable based on the entire model set and computes the unconditional standard error and unconditional confidence intervals as described in Buckland et al. (1997) and Burnham and Anderson (2002). This can be particularly useful when dealing with data from an experiment (e.g., ANOVA) and when the focus is to determine the effect of a given factor. This is an information-theoretic alternative to multiple comparisons (e.g., Burnham et al. 2011).
modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICaov.lm' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICglm.lm' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, gamdisp = NULL, ...) ## S3 method for class 'AICgls' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AIClm' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AIClme' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICmer' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", ...) ## S3 method for class 'AICglmerMod' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", ...) ## S3 method for class 'AIClmerMod' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AIClmerModLmerTest' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICnegbin.glm.lm' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", ...) ## S3 method for class 'AICrlm.lm' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...) ## S3 method for class 'AICsurvreg' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", ...) ## S3 method for class 'AICunmarkedFitOccu' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitColExt' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuRN' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitPCount' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitPCO' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitDS' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGDS' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuFP' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitMPois' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGMM' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitGPC' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuTTD' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitMMO' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitDSO' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuMS' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...) ## S3 method for class 'AICunmarkedFitOccuMulti' modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95, type = "response", c.hat = 1, parm.type = NULL, ...)
cand.set |
a list storing each of the models in the candidate model set. |
modnames |
a character vector of model names to facilitate the identification of
each model in the model selection table. If |
newdata |
a data frame with two rows and where the columns correspond to the
explanatory variables specified in the candidate models. Note that this
data set must have the same structure as that of the original data frame
for which we want to make predictions, specifically, the same variable
type and names that appear in the original data set. Each row of the
data set defines one of the two groups compared. The first row in
|
second.ord |
logical. If |
nobs |
this argument allows the specification of a numeric value other than
total sample size to compute the AICc (i.e., |
uncond.se |
either, |
conf.level |
the confidence level (1 - α) requested for the computation of unconditional confidence intervals. To obtain confidence intervals corrected for multiple comparisons between pairs of treatments, it is possible to adjust the α level according to various strategies such as the Bonferroni correction (Dunn 1961). |
type |
the scale of prediction requested, one of |
c.hat |
value of overdispersion parameter (i.e., variance inflation factor) such
as that obtained from |
gamdisp |
if gamma GLM is used, the dispersion parameter should be specified here to apply the same value to each model. |
parm.type |
this argument specifies the parameter type on which the effect size
will be computed and is only relevant for models of |
... |
additional arguments passed to the function. |
The strategy used here to compute effect sizes is to work from the
newdata
object to create two predictions from a given model and
compute the differences and standard errors between both values. This
step is executed for each model in the candidate model set, to obtain a
model-averaged estimate of the effect size and unconditional standard
error. As a result, the newdata
argument is restricted to two
rows, each for a given prediction. To specify each group, the values
entered in the column for each explanatory variable can be identical,
except for the grouping variable. In such a case, the function will
identify the variable and the assign group names based on the values of
the variable. If more than a single variable has different values in
its respective column, the function will print generic names in the
output to identify the two groups. A sensible choice of value for the
explanatory variables to be held constant is the average of the
variable.
Model-averaging effect sizes is most useful in true experiments (e.g., ANOVA-type designs), where one wants to obtain the best estimate of effect size given the support of each candidate model. This can be considered as a information-theoretic analog of traditional multiple comparisons, except that the information contained in the entire model set is used instead of being restricted to a single model. See 'Examples' below for applications.
modavgEffect
calls the appropriate method depending on the class
of objects in the list. The current classes supported include
aov
, glm
, gls
, lm
, lme
, mer
,
glmerMod
, lmerMod
, lmerModLmerTest
, rlm
,
survreg
, as well as models of unmarkedFitOccu
,
unmarkedFitColExt
, unmarkedFitOccuFP
,
unmarkedFitOccuRN
, unmarkedFitOccuTTD
,
unmarkedFitPCount
, unmarkedFitPCO
, unmarkedFitDS
,
unmarkedFitDSO
, unmarkedFitGDS
, unmarkedFitMPois
,
unmarkedFitGMM
, unmarkedFitMMO
, unmarkedFitGPC
,
unmarkedFitOccuMS
, and unmarkedFitOccuMulti
.
classes.
The result is an object of class modavgEffect
with the following
components:
Group.variable |
the grouping variable defining the two groups compared. |
Group1 |
the first group considered in the comparison. |
Group2 |
the second group considered in the comparison. |
Type |
the scale on which the model-averaged effect size was computed (e.g., response or link). |
Mod.avg.table |
the full model selection table including the entire set of candidate models. |
Mod.avg.eff |
the model-averaged effect size based on the entire candidate model set. |
Uncond.SE |
the unconditional standard error for the model-averaged effect size. |
Conf.level |
the confidence level used to compute the confidence interval. |
Lower.CL |
the lower confidence limit. |
Upper.CL |
the upper confidence limit. |
Matrix.output |
a matrix containing the model-averaged effect size, the unconditional standard error, and the lower and upper confidence limits. |
Marc J. Mazerolle
Anderson, D. R. (2008) Model-based Inference in the Life Sciences: a primer on evidence. Springer: New York.
Buckland, S. T., Burnham, K. P., Augustin, N. H. (1997) Model selection: an integral part of inference. Biometrics 53, 603–618.
Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical information-theoretic approach. Second edition. Springer: New York.
Burnham, K. P., Anderson, D. R. (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods and Research 33, 261–304.
Burnham, K. P., Anderson, D. R., Huyvaert, K. P. (2011) AIC model selection and multimodel inference in behaviorial ecology: some background, observations and comparisons. Behavioral Ecology and Sociobiology 65, 23–25.
Dail, D., Madsen, L. (2011) Models for estimating abundance from repeated counts of an open population. Biometrics 67, 577–587.
Dunn, O. J. (1961) Multiple comparisons among means. Journal of the American Statistical Association 56, 52–64.
MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., Langtimm, C. A. (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255.
MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., Franklin, A. B. (2003) Estimating site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology 84, 2200–2207.
Mazerolle, M. J. (2006) Improving data analysis in herpetology: using Akaike's Information Criterion (AIC) to assess the strength of biological hypotheses. Amphibia-Reptilia 27, 169–180.
Royle, J. A. (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics 60, 108–115.
##heights (cm) of plants grown under two fertilizers, Ex. 9.5 from ##Zar (1984): Biostatistical Analysis. Prentice Hall: New Jersey. heights <- data.frame(Height = c(48.2, 54.6, 58.3, 47.8, 51.4, 52.0, 55.2, 49.1, 49.9, 52.6, 52.3, 57.4, 55.6, 53.2, 61.3, 58.0, 59.8, 54.8), Fertilizer = c(rep("old", 10), rep("new", 8))) ##run linear model hypothesizing an effect of fertilizer m1 <- lm(Height ~ Fertilizer, data = heights) ##run null model (no effect of fertilizer) m0 <- lm(Height ~ 1, data = heights) ##assemble models in list Cands <- list(m1, m0) Modnames <- c("Fert", "null") ##compute model selection table to compare ##both hypotheses aictab(cand.set = Cands, modnames = Modnames) ##note that model with fertilizer effect is much better supported ##than the null ##compute model-averaged effect sizes: one model hypothesizes a ##difference of 0, whereas the other assumes a difference ##prepare newdata object from which differences between groups ##will be computed ##the first row of the newdata data.frame relates to the first group, ##whereas the second row corresponds to the second group pred.data <- data.frame(Fertilizer = c("new", "old")) ##compute best estimate of effect size accounting for model selection ##uncertainty modavgEffect(cand.set = Cands, modnames = Modnames, newdata = pred.data) ##classical one-way ANOVA type-design ## Not run: ##generate data for two groups and control set.seed(seed = 15) y <- round(c(rnorm(n = 15, mean = 10, sd = 5), rnorm(n = 15, mean = 15, sd = 5), rnorm(n = 15, mean = 12, sd = 5)), digits = 2) ##groups group <- c(rep("cont", 15), rep("trt1", 15), rep("trt2", 15)) ##combine in data set aov.data <- data.frame(Y = y, Group = group) rm(y, group) ##run model with group effect lm.eff <- lm(Y ~ Group, data = aov.data) ##null model lm.0 <- lm(Y ~ 1, data = aov.data) ##compare both models Cands <- list(lm.eff, lm.0) Mods <- c("group effect", "no group effect") aictab(cand.set = Cands, modnames = Mods) ##model with group effect has most of the weight ##compute model-averaged effect sizes ##trt1 - control modavgEffect(cand.set = Cands, modnames = Modnames, newdata = data.frame(Group = c("trt1", "cont"))) ##trt1 differs from cont ##trt2 - control modavgEffect(cand.set = Cands, modnames = Modnames, newdata = data.frame(Group = c("trt2", "cont"))) ##trt2 does not differ from cont ## End(Not run) ##two-way ANOVA type design, Ex. 13.1 (Zar 1984) of plasma calcium ##concentration (mg/100 ml) in birds as a function of sex and hormone ##treatment ## Not run: birds <- data.frame(Ca = c(16.87, 16.18, 17.12, 16.83, 17.19, 15.86, 14.92, 15.63, 15.24, 14.8, 19.07, 18.77, 17.63, 16.99, 18.04, 17.2, 17.64, 17.89, 16.78, 16.92, 32.45, 28.71, 34.65, 28.79, 24.46, 30.54, 32.41, 28.97, 28.46, 29.65), Sex = c("M", "M", "M", "M", "M", "F", "F", "F", "F", "F", "M", "M", "M", "M", "M", "F", "F", "F", "F", "F", "M", "M", "M", "M", "M", "F", "F", "F", "F", "F"), Hormone = as.factor(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3))) ##candidate models ##interactive effects m.inter <- lm(Ca ~ Sex + Hormone + Sex:Hormone, data = birds) ##additive effects m.add <- lm(Ca ~ Sex + Hormone, data = birds) ##Sex only m.sex <- lm(Ca ~ Sex, data = birds) ##Hormone only m.horm <- lm(Ca ~ Hormone, data = birds) ##null m.0 <- lm(Ca ~ 1, data = birds) ##model selection Cands <- list(m.inter, m.add, m.sex, m.horm, m.0) Mods <- c("interaction", "additive", "sex only", "horm only", "null") aictab(Cands, Mods) ##there is some support for a hormone only treatment, but also for ##additive effects ##compute model-averaged effects of sex, and set the other variable ##to a constant value ##M - F sex.data <- data.frame(Sex = c("M", "F"), Hormone = c("1", "1")) modavgEffect(Cands, Mods, newdata = sex.data) ##no support for a sex main effect ##hormone 1 - 3, but set Sex to a constant value horm1.data <- data.frame(Sex = c("M", "M"), Hormone = c("1", "3")) modavgEffect(Cands, Mods, newdata = horm1.data) ##hormone 2 - 3, but set Sex to a constant value horm2.data <- data.frame(Sex = c("M", "M"), Hormone = c("2", "3")) modavgEffect(Cands, Mods, newdata = horm2.data) ## End(Not run) ##Poisson regression with anuran larvae example from Mazerolle (2006) ## Not run: data(min.trap) ##assign "UPLAND" as the reference level as in Mazerolle (2006) min.trap$Type <- relevel(min.trap$Type, ref = "UPLAND") ##set up candidate models Cand.mod <- list( ) ##global model Cand.mod[[1]] <- glm(Num_anura ~ Type + log.Perimeter, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[2]] <- glm(Num_anura ~ log.Perimeter, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[3]] <- glm(Num_anura ~ Type, family = poisson, offset = log(Effort), data = min.trap) Cand.mod[[4]] <- glm(Num_anura ~ 1, family = poisson, offset = log(Effort), data = min.trap) ##check c-hat for global model vif.hat <- c_hat(Cand.mod[[1]]) #uses Pearson's chi-square/df ##assign names to each model Modnames <- c("type + logperim", "type", "logperim", "intercept only") ##compute model-averaged estimate of difference between abundance at bog ##pond and upland pond ##create newdata object to make predictions pred.data <- data.frame(Type = c("BOG", "UPLAND"), log.Perimeter = mean(min.trap$log.Perimeter), Effort = mean(min.trap$Effort)) modavgEffect(Cand.mod, Modnames, newdata = pred.data, c.hat = vif.hat, type = "response") ##little suport for a pond type effect ## End(Not run) ##mixed linear model example from ?nlme ## Not run: library(nlme) Cand.models <- list( ) Cand.models[[1]] <- lme(distance ~ age, data = Orthodont, method="ML") Cand.models[[2]] <- lme(distance ~ age + Sex, data = Orthodont, random = ~ 1, method="ML") Cand.models[[3]] <-lme(distance ~ 1, data = Orthodont, random = ~ 1, method="ML") Cand.models[[4]] <-lme(distance ~ Sex, data = Orthodont, random = ~ 1, method="ML") Modnames <- c("age", "age + sex", "null", "sex") data.other <- data.frame(age = mean(Orthodont$age), Sex = factor(c("Male", "Female"))) modavgEffect(cand.set = Cand.models, modnames = Modnames, newdata = data.other, conf.level = 0.95, second.ord = TRUE, nobs = NULL, uncond.se = "revised") detach(package:nlme) ## End(Not run) ##site occupancy analysis example ## Not run: library(unmarked) ##single season model data(frogs) pferUMF <- unmarkedFrameOccu(pfer.bin) ##create a bogus site group site.group <- c(rep(1, times = nrow(pfer.bin)/2), rep(0, nrow(pfer.bin)/2)) ## add some fake covariates for illustration siteCovs(pferUMF) <- data.frame(site.group, sitevar1 = rnorm(numSites(pferUMF)), sitevar2 = runif(numSites(pferUMF))) ## observation covariates are in site-major, observation-minor order obsCovs(pferUMF) <- data.frame(obsvar1 = rnorm(numSites(pferUMF) * obsNum(pferUMF))) fm1 <- occu(~ obsvar1 ~ site.group, pferUMF) fm2 <- occu(~ obsvar1 ~ 1, pferUMF) Cand.mods <- list(fm1, fm2) Modnames <- c("fm1", "fm2") ##model selection table aictab(cand.set = Cand.mods, modnames = Modnames, second.ord = TRUE) ##model-averaged effect sizes comparing site.group 1 - site.group 0 newer.dat <- data.frame(site.group = c(0, 1)) modavgEffect(cand.set = Cand.mods, modnames = Modnames, type = "response", second.ord = TRUE, newdata = newer.dat, parm.type = "psi") ##no support for an effect of site group ## End(Not run) ##single season N-mixture models ## Not run: data(mallard) ##this variable was created to illustrate the use of modavgEffect ##with detection variables mallard.site$site.group <- c(rep(1, 119), rep(0, 120)) mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site, obsCovs = mallard.obs) siteCovs(mallardUMF) tmp.covs <- obsCovs(mallardUMF) obsCovs(mallardUMF)$date2 <- tmp.covs$date^2 (fm.mall <- pcount(~ site.group ~ length + elev + forest, mallardUMF, K=30)) (fm.mallb <- pcount(~ 1 ~ length + elev + forest, mallardUMF, K=30)) Cands <- list(fm.mall, fm.mallb) Modnames <- c("one", "null") ##model averaged effect size of site.group 1 - site.group 0 on response ##scale (point estimate) modavgEffect(Cands, Modnames, newdata = data.frame(site.group = c(0, 1)), parm.type = "detect", type = "response") ##model averaged effect size of site.group 1 - site.group 0 on link ##scale (here, logit link) modavgEffect(Cands, Modnames, newdata = data.frame(site.group = c(0, 1)), parm.type = "detect", type = "link") detach(package:unmarked) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.