Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

BMTAR

Bayesian Approach for MTAR Models with Missing Data

Implements parameter estimation using a Bayesian approach for Multivariate Threshold Autoregressive (MTAR) models with missing data using Markov Chain Monte Carlo methods. Performs the simulation of MTAR processes (mtarsim()), estimation of matrix parameters and the threshold values (mtarns()), identification of the autoregressive orders using Bayesian variable selection (mtarstr()), identification of the number of regimes using Metropolised Carlin and Chib (mtarnumreg()) and estimate missing data, coefficients and covariance matrices conditional on the autoregressive orders, the threshold values and the number of regimes (mtarmissing()). Calderon and Nieto (2017) <doi:10.1080/03610926.2014.990758>.

Functions (30)

BMTAR

Bayesian Approach for MTAR Models with Missing Data

v0.1.1
GPL (>= 2)
Authors
Valeria Bejarano Salcedo <vbejaranos@unal.edu.co>, Sergio Alejandro Calderon Villanueva <sacalderonv@unal.edu.co> Andrey Duvan Rincon Torres <adrincont@unal.edu.co>
Initial release
2021-01-18

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.