Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

bergm

Parameter estimation for Bayesian ERGMs


Description

Function to fit Bayesian exponential random graphs models using the approximate exchange algorithm.

Usage

bergm(
  formula,
  prior.mean = NULL,
  prior.sigma = NULL,
  burn.in = 100,
  main.iters = 1000,
  aux.iters = 1000,
  nchains = NULL,
  gamma = 0.5,
  V.proposal = 0.0025,
  startVals = NULL,
  offset.coef = NULL,
  ...
)

Arguments

formula

formula; an ergm formula object, of the form <network> ~ <model terms> where <network> is a network object and <model terms> are ergm-terms.

prior.mean

vector; mean vector of the multivariate Normal prior. By default set to a vector of 0's.

prior.sigma

square matrix; variance/covariance matrix for the multivariate Normal prior. By default set to a diagonal matrix with every diagonal entry equal to 100.

burn.in

count; number of burn-in iterations for every chain of the population.

main.iters

count; number of iterations for every chain of the population.

aux.iters

count; number of auxiliary iterations used for network simulation.

nchains

count; number of chains of the population MCMC. By default set to twice the model dimension (number of model terms).

gamma

scalar; parallel adaptive direction sampling move factor.

V.proposal

count; diagonal entry for the multivariate Normal proposal. By default set to 0.0025.

startVals

vector; optional starting values for the parameter estimation.

offset.coef

vector; A vector of coefficients for the offset terms.

...

additional arguments, to be passed to lower-level functions.

References

Caimo, A. and Friel, N. (2011), "Bayesian Inference for Exponential Random Graph Models," Social Networks, 33(1), 41-55. https://arxiv.org/abs/1007.5192

Caimo, A. and Friel, N. (2014), "Bergm: Bayesian Exponential Random Graphs in R," Journal of Statistical Software, 61(2), 1-25. https://www.jstatsoft.org/article/view/v061i02

Examples

# Load the florentine marriage network
data(florentine)

# Posterior parameter estimation:
p.flo <- bergm(flomarriage ~ edges + kstar(2),
               burn.in    = 50,
               aux.iters  = 500,
               main.iters = 1000,
               gamma      = 1.2)

# Posterior summaries:
summary(p.flo)

Bergm

Bayesian Exponential Random Graph Models

v5.0.2
GPL (>= 2)
Authors
Alberto Caimo [aut, cre], Lampros Bouranis [aut], Robert Krause [aut] Nial Friel [ctb]
Initial release
2020-11-12

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.