Calculate the NNET Result with the Smallest Value from Various Random Starts
This function provides the best solution from various calls to the nnet
feed-forward artificial neural networks function (nnet).
nnetrandom(formula,data,tries=10,leave.one.out=F,...)
This function makes various calls to nnet
. If desired by the user, leave-one-out statistics are provided that report the prediction if one particular sample unit was not used for iterating the networks.
The function returns the same components as nnet
, but adds the following components:
range |
Summary of the observed "values". |
tries |
Number of different attempts to iterate an ANN. |
CV |
Predicted class when not using the respective sample unit for iterating ANN. |
succesful |
Test whether leave-one-out statistics provided the same class as the original class. |
Roeland Kindt (World Agroforestry Centre)
## Not run: data(faramea) faramea <- na.omit(faramea) faramea$presence <- as.numeric(faramea$Faramea.occidentalis > 0) attach(faramea) library(nnet) result <- nnetrandom(presence ~ Elevation, data=faramea, size=2, skip=FALSE, entropy=TRUE, trace=FALSE, maxit=1000, tries=100, leave.one.out=FALSE) summary(result) result$fitted.values result$value result2 <- nnetrandom(presence ~ Elevation, data=faramea, size=2, skip=FALSE, entropy=TRUE, trace=FALSE, maxit=1000, tries=50, leave.one.out=TRUE) result2$range result2$CV result2$successful ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.