Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

IRT.likelihood

S3 Methods for Extracting of the Individual Likelihood and the Individual Posterior


Description

Functions for extracting the individual likelihood and individual posterior distribution.

Usage

IRT.likelihood(object, ...)

IRT.posterior(object, ...)

## S3 method for class 'din'
IRT.likelihood(object, ...)
## S3 method for class 'din'
IRT.posterior(object, ...)

## S3 method for class 'gdina'
IRT.likelihood(object, ...)
## S3 method for class 'gdina'
IRT.posterior(object, ...)

## S3 method for class 'gdm'
IRT.likelihood(object, ...)
## S3 method for class 'gdm'
IRT.posterior(object, ...)

## S3 method for class 'mcdina'
IRT.likelihood(object, ...)
## S3 method for class 'mcdina'
IRT.posterior(object, ...)

## S3 method for class 'reglca'
IRT.likelihood(object, ...)
## S3 method for class 'reglca'
IRT.posterior(object, ...)

## S3 method for class 'slca'
IRT.likelihood(object, ...)
## S3 method for class 'slca'
IRT.posterior(object, ...)

Arguments

object

Object of classes din, gdina, mcdina, gdm, slca, reglca.

...

More arguments to be passed.

Value

For both functions IRT.likelihood and IRT.posterior, it is a matrix with attributes

theta

Uni- or multidimensional skill space (theta grid in item response models).

prob.theta

Probability distribution of theta

skillspace

Design matrix and estimated parameters for skill space distribution (only for IRT.posterior.slca)

G

Number of groups

See Also

Examples

#############################################################################
# EXAMPLE 1: Extracting likelihood and posterior from a DINA model
#############################################################################

data(sim.dina, package="CDM")
data(sim.qmatrix, package="CDM")

#*** estimate model
mod1 <- CDM::din( sim.dina, q.matrix=sim.qmatrix, rule="DINA")
#*** extract likelihood
likemod1 <- CDM::IRT.likelihood(mod1)
str(likemod1)
# extract theta
attr(likemod1, "theta" )
#*** extract posterior
pomod1 <- CDM::IRT.posterior( mod1 )
str(pomod1)

CDM

Cognitive Diagnosis Modeling

v7.5-15
GPL (>= 2)
Authors
Alexander Robitzsch [aut, cre], Thomas Kiefer [aut], Ann Cathrice George [aut], Ali Uenlue [aut]
Initial release
2020-03-10 14:19:21

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.