Generation of a Replicate Design for IRT.jackknife
This function generates a Jackknife replicate design which is
necessary to use the IRT.jackknife
function. The function
is a wrapper to BIFIE.data.jack
in the BIFIEsurvey package.
IRT.repDesign(data, wgt=NULL, jktype="JK_TIMSS", jkzone=NULL, jkrep=NULL, jkfac=NULL, fayfac=1, wgtrep="W_FSTR", ngr=100, Nboot=200, seed=.Random.seed)
data |
Dataset which must contain weights and item responses |
wgt |
Vector with sample weights |
jktype |
Type of jackknife procedure for creating the BIFIE.data object.
|
jkzone |
Variable name for jackknife zones.
If |
jkrep |
Variable name containing Jackknife replicates |
jkfac |
Factor for multiplying jackknife replicate weights.
If |
fayfac |
Fay factor. For Jackknife, the default is 1. For a Bootstrap with R samples with replacement, the Fay factor is 1/R. |
wgtrep |
Already available replicate design |
ngr |
Number of groups |
Nboot |
Number of bootstrap samples |
seed |
Random seed |
A list with following entries
wgt |
Vector with weights |
wgtrep |
Matrix containing the replicate design |
fayfac |
Fay factor needed for Jackknife calculations |
See IRT.jackknife
for further examples.
See the BIFIE.data.jack
function in the BIFIEsurvey package.
## Not run: # load the BIFIEsurvey package library(BIFIEsurvey) ############################################################################# # EXAMPLE 1: Design with Jackknife replicate weights in TIMSS ############################################################################# data(data.timss11.G4.AUT, package="CDM") dat <- CDM::data.timss11.G4.AUT$data # generate design rdes <- CDM::IRT.repDesign( data=dat, wgt="TOTWGT", jktype="JK_TIMSS", jkzone="JKCZONE", jkrep="JKCREP" ) str(rdes) ############################################################################# # EXAMPLE 2: Bootstrap resampling ############################################################################# data(sim.qmatrix, package="CDM") q.matrix <- CDM::sim.qmatrix # simulate data according to the DINA model dat <- CDM::sim.din(N=2000, q.matrix=q.matrix )$dat # bootstrap with 300 random samples rdes <- CDM::IRT.repDesign( data=dat, jktype="BOOT", Nboot=300 ) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.