Variance Matrix of a Nonlinear Estimator Using the Delta Method
Computes the variance of a nonlinear parameter using the delta method.
deltaMethod(derived.pars, est, Sigma, h=1e-05)
derived.pars |
Vector of derived parameters written in R formula framework (see Examples). |
est |
Vector of parameter estimates |
Sigma |
Covariance matrix of parameters |
h |
Numerical differentiation parameter |
coef |
Vector of nonlinear parameters |
vcov |
Covariance matrix of nonlinear parameters |
se |
Vector of standard errors |
A |
First derivative of nonlinear transformation |
univarTest |
Data frame containing univariate summary of nonlinear parameters |
WaldTest |
Multivariate parameter test for nonlinear parameter |
See car::deltaMethod
or
msm::deltamethod
.
############################################################################# # EXAMPLE 1: Nonlinear parameter ############################################################################# #-- parameter estimate est <- c( 510.67, 102.57) names(est) <- c("mu", "sigma") #-- covariance matrix Sigma <- matrix( c(5.83, 0.45, 0.45, 3.21 ), nrow=2, ncol=2 ) colnames(Sigma) <- rownames(Sigma) <- names(est) #-- define derived nonlinear parameters derived.pars <- list( "d"=~ I( ( mu - 508 ) / sigma ), "dsig"=~ I( sigma / 100 - 1) ) #*** apply delta method res <- CDM::deltaMethod( derived.pars, est, Sigma ) res
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.