Structured Latent Class Analysis (SLCA)
This function implements a structured latent class model for polytomous item responses (Formann, 1985, 1992). Lasso estimation for the item parameters is included (Chen, Liu, Xu & Ying, 2015; Chen, Li, Liu & Ying, 2017; Sun, Chen, Liu, Ying & Xin, 2016).
slca(data, group=NULL, weights=rep(1, nrow(data)), Xdes, Xlambda.init=NULL, Xlambda.fixed=NULL, Xlambda.constr.V=NULL, Xlambda.constr.c=NULL, delta.designmatrix=NULL, delta.init=NULL, delta.fixed=NULL, delta.linkfct="log", Xlambda_positive=NULL, regular_type="lasso", regular_lam=0, regular_w=NULL, regular_n=nrow(data), maxiter=1000, conv=1e-5, globconv=1e-5, msteps=10, convM=5e-04, decrease.increments=FALSE, oldfac=0, dampening_factor=1.01, seed=NULL, progress=TRUE, PEM=TRUE, PEM_itermax=maxiter, ...) ## S3 method for class 'slca' summary(object, file=NULL, ...) ## S3 method for class 'slca' print(x, ...) ## S3 method for class 'slca' plot(x, group=1, ... )
data |
Matrix of polytomous item responses |
group |
Optional vector of group identifiers. For |
weights |
Optional vector of sample weights |
Xdes |
Design matrix for x_{ijh} with q_{ihjv} entries. Therefore, it must be an array with four dimensions referring to items (i), categories (h), latent classes (j) and λ parameters (v). |
Xlambda.init |
Initial λ_x parameters |
Xlambda.fixed |
Fixed λ_x parameters. These must be provided by a matrix with two columns: 1st column – Parameter index, 2nd column: Fixed value. |
Xlambda.constr.V |
A design matrix for linear restrictions of the form V_x λ_x=c_x for the λ_x parameter. |
Xlambda.constr.c |
A vector for the linear restriction V_x λ_x=c_x of the λ_x parameter. |
delta.designmatrix |
Design matrix for delta parameters δ parameterizing the latent class distribution by log-linear smoothing (Xu & von Davier, 2008) |
delta.init |
Initial δ parameters |
delta.fixed |
Fixed δ parameters. This must be a matrix with three columns: 1st column: Parameter index, 2nd column: Group index, 3rd column: Fixed value |
delta.linkfct |
Link function for skill space reduction.
This can be the log-linear link ( |
Xlambda_positive |
Optional vector of logical indicating which elements of \bold{λ}_x should be constrained to be positive. |
regular_type |
Regularization method which can be |
regular_lam |
Numeric. Regularization parameter |
regular_w |
Vector for weighting the regularization penalty |
regular_n |
Vector of regularization factor. This will be typically the sample size. |
maxiter |
Maximum number of iterations |
conv |
Convergence criterion for item parameters and distribution parameters |
globconv |
Global deviance convergence criterion |
msteps |
Maximum number of M steps in estimating b and a item parameters. The default is to use 4 M steps. |
convM |
Convergence criterion in M step |
decrease.increments |
Should in the M step the increments
of a and b parameters decrease during iterations?
The default is |
oldfac |
Factor f between 0 and 1 to control convergence behavior.
If x_t denotes the estimated parameter in iteration t,
then the regularized estimate x_t^{\ast} is obtained by
x_t^{\ast}=f x_{t-1} + (1-f) x_t. Therefore, values of
|
dampening_factor |
Factor larger than one defining the specified decrease in decrements in iterations. |
seed |
Simulation seed for initial parameters. The default
of |
progress |
An optional logical indicating whether the function should print the progress of iteration in the estimation process. |
PEM |
Logical indicating whether the P-EM acceleration should be applied (Berlinet & Roland, 2012). |
PEM_itermax |
Number of iterations in which the P-EM method should be applied. |
object |
A required object of class |
file |
Optional file name for a file in which |
x |
A required object of class |
... |
Optional parameters to be passed to or from other methods will be ignored. |
The structured latent class model allows for general constraints of items i in categories h and classes j. The item response model is
P( X_{i}=h | j )=\frac{ \exp( x_{ihj} ) }{ ∑_l \exp( x_{ilj} ) }
with linear constraints on the class specific probabilities
x_{ihj}=∑_v q_{ihjv} λ_{xv}
Linear restrictions on the λ_x parameter can be specified by
a matrix equation V_x λ_x=c_x (see Xlambda.constr.V
and
Xlambda.constr.c
; Neuhaus, 1996).
The latent class distribution can be smoothed by a log-linear link function (Xu & von Davier, 2008) or a logistic link function (Formann, 1992). For class j in group g employing a link function h, it holds that
h [ P( j| g) ] \propto ∑_w r_{jw} δ_{gw}
where group-specific distributions are allowed. The values
r_{jw} are specified in the design matrix delta.designmatrix
.
This model contains classical uni- and multidimensional latent trait models, latent class analysis, located latent class analysis, cognitive diagnostic models, the general diagnostic model and mixture item response models as special cases (see Formann & Kohlmann, 1998; Formann, 2007).
The function also allows for regularization of λ_{xv} parameters using the lasso approach (Sun et al., 2016). More formally, the penalty function can be written as
pen( \bold{λ}_x )=p_λ ∑_v n_v w_v | λ_{xv} |
where p_λ can be specified with regular_lam
,
w_v can be specified with regular_w
, and
n_v can be specified with regular_n
.
An object of class slca
. The list contains the
following entries:
item |
Data frame with conditional item probabilities |
deviance |
Deviance |
ic |
Information criteria, number of estimated parameters |
Xlambda |
Estimated λ_x parameters |
se.Xlambda |
Standard error of λ_x parameters |
pi.k |
Trait distribution |
pjk |
Item response probabilities evaluated for all classes |
n.ik |
An array of expected counts n_{cikg} of ability class c at item i at category k in group g |
G |
Number of groups |
I |
Number of items |
N |
Number of persons |
delta |
Parameter estimates for skillspace representation |
covdelta |
Covariance matrix of parameter estimates for skillspace representation |
MLE.class |
Classified skills for each student (MLE) |
MAP.class |
Classified skills for each student (MAP) |
data |
Original data frame |
group.stat |
Group statistics (sample sizes, group labels) |
p.xi.aj |
Individual likelihood |
posterior |
Individual posterior distribution |
K.item |
Maximal category per item |
time |
Info about computation time |
skillspace |
Used skillspace parametrization |
iter |
Number of iterations |
seed.used |
Used simulation seed |
Xlambda.init |
Used initial lambda parameters |
delta.init |
Used initial delta parameters |
converged |
Logical indicating whether convergence was achieved. |
If some items have differing number of categories, appropriate
class probabilities in non-existing categories per items can be
practically set to zero by loading an item for all skill classes
on a fixed λ_x parameter of a small number, e.g. -999
.
The implementation of the model builds on pieces work of Anton Formann. See http://www.antonformann.at/ for more information.
Berlinet, A. F., & Roland, C. (2012). Acceleration of the EM algorithm: P-EM versus epsilon algorithm. Computational Statistics & Data Analysis, 56(12), 4122-4137.
Chen, Y., Liu, J., Xu, G., & Ying, Z. (2015). Statistical analysis of Q-matrix based diagnostic classification models. Journal of the American Statistical Association, 110, 850-866.
Chen, Y., Li, X., Liu, J., & Ying, Z. (2017). Regularized latent class analysis with application in cognitive diagnosis. Psychometrika, 82, 660-692.
Formann, A. K. (1985). Constrained latent class models: Theory and applications. British Journal of Mathematical and Statistical Psychology, 38, 87-111.
Formann, A. K. (1992). Linear logistic latent class analysis for polytomous data. Journal of the American Statistical Association, 87, 476-486.
Formann, A. K. (2007). (Almost) Equivalence between conditional and mixture maximum likelihood estimates for some models of the Rasch type. In M. von Davier & C. H. Carstensen (Eds.), Multivariate and mixture distribution Rasch models (pp. 177-189). New York: Springer.
Formann, A. K., & Kohlmann, T. (1998). Structural latent class models. Sociological Methods & Research, 26, 530-565.
Neuhaus, W. (1996). Optimal estimation under linear constraints. Astin Bulletin, 26, 233-245.
Sun, J., Chen, Y., Liu, J., Ying, Z., & Xin, T. (2016). Latent variable selection for multidimensional item response theory models via L_1 regularization. Psychometrika, 81(4), 921-939.
Xu, X., & von Davier, M. (2008). Fitting the structured general diagnostic model to NAEP data. ETS Research Report ETS RR-08-27. Princeton, ETS.
For latent trait models with continuous latent variables see the mirt or TAM packages. For a discrete trait distribution see the MultiLCIRT package.
For latent class models see the poLCA, covLCA or randomLCA package.
For mixture Rasch or mixture IRT models see the psychomix or mRm package.
############################################################################# # EXAMPLE 1: data.Students | (Generalized) Partial Credit Model ############################################################################# data(data.Students, package="CDM") dat <- data.Students[, c("mj1","mj2","mj3","mj4","sc1", "sc2") ] # define discretized ability theta.k <- seq( -6, 6, len=21 ) #*** Model 1: Partial credit model # define design matrix for lambda I <- ncol(dat) maxK <- 4 TP <- length(theta.k) NXlam <- I*(maxK-1) + 1 # number of estimated parameters # last parameter is joint slope parameter Xdes <- array( 0, dim=c(I, maxK, TP, NXlam ) ) # Item1Cat1, ..., Item1Cat3, Item2Cat1, ..., dimnames(Xdes)[[1]] <- colnames(dat) dimnames(Xdes)[[2]] <- paste0("Cat", 1:(maxK) ) dimnames(Xdes)[[3]] <- paste0("Class", 1:TP ) v2 <- unlist( sapply( 1:I, FUN=function(ii){ # ii paste0( paste0( colnames(dat)[ii], "_b" ), "Cat", 1:(maxK-1) ) }, simplify=FALSE) ) dimnames(Xdes)[[4]] <- c( v2, "a" ) # define theta design and item discriminations for (ii in 1:I){ for (hh in 1:(maxK-1) ){ Xdes[ii, hh + 1,, NXlam ] <- hh * theta.k } } # item intercepts for (ii in 1:I){ for (hh in 1:(maxK-1) ){ # ii <- 1 # Item # hh <- 1 # category Xdes[ii,hh+1,, ( ii - 1)*(maxK-1) + hh] <- 1 } } #**** # skill space designmatrix TP <- length(theta.k) w1 <- stats::dnorm(theta.k) w1 <- w1 / sum(w1) delta.designmatrix <- matrix( 1, nrow=TP, ncol=1 ) delta.designmatrix[,1] <- log(w1) # initial lambda parameters Xlambda.init <- c( stats::rnorm( dim(Xdes)[[4]] - 1 ), 1 ) # fixed delta parameter delta.fixed <- cbind( 1, 1,1 ) # estimate model mod1 <- CDM::slca( dat, Xdes=Xdes, delta.designmatrix=delta.designmatrix, Xlambda.init=Xlambda.init, delta.fixed=delta.fixed ) summary(mod1) plot(mod1, cex.names=.7 ) ## Not run: #*** Model 2: Partial credit model with some parameter constraints # fixed lambda parameters Xlambda.fixed <- cbind( c(1,19), c(3.2,1.52 ) ) # 1st parameter=3.2 # 19th parameter=1.52 (joint item slope) mod2 <- CDM::slca( dat, Xdes=Xdes, delta.designmatrix=delta.designmatrix, delta.init=delta.init, Xlambda.init=Xlambda.init, delta.fixed=delta.fixed, Xlambda.fixed=Xlambda.fixed, maxiter=70 ) #*** Model 3: Partial credit model with non-normal distribution Xlambda.fixed <- cbind( c(1,19), c(3.2,1) ) # fix item slope to one delta.designmatrix <- cbind( 1, theta.k, theta.k^2, theta.k^3 ) mod3 <- CDM::slca( dat, Xdes=Xdes, delta.designmatrix=delta.designmatrix, Xlambda.fixed=Xlambda.fixed, maxiter=200 ) summary(mod3) # non-normal distribution with convergence regularizing factor oldfac mod3a <- CDM::slca( dat, Xdes=Xdes, delta.designmatrix=delta.designmatrix, Xlambda.fixed=Xlambda.fixed, maxiter=500, oldfac=.95 ) summary(mod3a) #*** Model 4: Generalized Partial Credit Model # estimate generalized partial credit model without restrictions on trait # distribution and item parameters to ensure better convergence behavior # Note that two parameters are not identifiable and information criteria # have to be adapted. #--- # define design matrix for lambda I <- ncol(dat) maxK <- 4 TP <- length(theta.k) NXlam <- I*(maxK-1) + I # number of estimated parameters Xdes <- array( 0, dim=c(I, maxK, TP, NXlam ) ) # Item1Cat1, ..., Item1Cat3, Item2Cat1, ..., dimnames(Xdes)[[1]] <- colnames(dat) dimnames(Xdes)[[2]] <- paste0("Cat", 1:(maxK) ) dimnames(Xdes)[[3]] <- paste0("Class", 1:TP ) v2 <- unlist( sapply( 1:I, FUN=function(ii){ # ii paste0( paste0( colnames(dat)[ii], "_b" ), "Cat", 1:(maxK-1) ) }, simplify=FALSE) ) dimnames(Xdes)[[4]] <- c( v2, paste0( colnames(dat),"_a") ) dimnames(Xdes) # define theta design and item discriminations for (ii in 1:I){ for (hh in 1:(maxK-1) ){ Xdes[ii, hh + 1,, I*(maxK-1) + ii ] <- hh * theta.k } } # item intercepts for (ii in 1:I){ for (hh in 1:(maxK-1) ){ Xdes[ii,hh+1,, ( ii - 1)*(maxK-1) + hh] <- 1 } } #**** # skill space designmatrix delta.designmatrix <- cbind( 1, theta.k,theta.k^2 ) # initial lambda parameters from partial credit model Xlambda.init <- mod1$Xlambda Xlambda.init <- c( mod1$Xlambda[ - length(Xlambda.init) ], rep( Xlambda.init[ length(Xlambda.init) ],I) ) # estimate model mod4 <- CDM::slca( dat, Xdes=Xdes, Xlambda.init=Xlambda.init, delta.designmatrix=delta.designmatrix, decrease.increments=TRUE, maxiter=300 ) ############################################################################# # EXAMPLE 2: Latent class model with two classes ############################################################################# set.seed(9876) I <- 7 # number of items # simulate response probabilities a1 <- stats::runif(I, 0, .4 ) a2 <- stats::runif(I, .6, 1 ) N <- 1000 # sample size # simulate data in two classes of proportions .3 and .7 N1 <- round(.3*N) dat1 <- 1 * ( matrix(a1,N1,I,byrow=TRUE) > matrix( stats::runif( N1 * I), N1, I ) ) N2 <- round(.7*N) dat2 <- 1 * ( matrix(a2,N2,I,byrow=TRUE) > matrix( stats::runif( N2 * I), N2, I ) ) dat <- rbind( dat1, dat2 ) colnames(dat) <- paste0("I", 1:I) # define design matrices TP <- 2 # two classes # The idea is that latent classes refer to two different "dimensions". # Items load on latent class indicators 1 and 2, see below. Xdes <- array(0, dim=c(I,2,2,2*I) ) items <- colnames(dat) dimnames(Xdes)[[4]] <- c(paste0( colnames(dat), "Class", 1), paste0( colnames(dat), "Class", 2) ) # items, categories, classes, parameters # probabilities for correct solution for (ii in 1:I){ Xdes[ ii, 2, 1, ii ] <- 1 # probabilities class 1 Xdes[ ii, 2, 2, ii+I ] <- 1 # probabilities class 2 } # estimate model mod1 <- CDM::slca( dat, Xdes=Xdes ) summary(mod1) ############################################################################# # EXAMPLE 3: Mixed Rasch model with two classes ############################################################################# set.seed(987) library(sirt) # simulate two latent classes of Rasch populations I <- 15 # 6 items b1 <- seq( -1.5, 1.5, len=I) # difficulties latent class 1 b2 <- b1 # difficulties latent class 2 b2[ c(4,7, 9, 11, 12, 13) ] <- c(1, -.5, -.5, .33, .33, -.66 ) N <- 3000 # number of persons wgt <- .25 # class probability for class 1 # class 1 dat1 <- sirt::sim.raschtype( stats::rnorm( wgt*N ), b1 ) # class 2 dat2 <- sirt::sim.raschtype( stats::rnorm( (1-wgt)*N, mean=1, sd=1.7), b2 ) dat <- rbind( dat1, dat2 ) # theta grid theta.k <- seq( -5, 5, len=9 ) TP <- length(theta.k) #*** Model 1: Rasch model with normal distribution maxK <- 2 NXlam <- I +1 Xdes <- array( 0, dim=c(I, maxK, TP, NXlam ) ) dimnames(Xdes)[[1]] <- colnames(dat) dimnames(Xdes)[[2]] <- paste0("Cat", 1:(maxK) ) dimnames(Xdes)[[4]] <- c( paste0( "b_", colnames(dat)[1:I] ), "a" ) # define item difficulties for (ii in 1:I){ Xdes[ii, 2,, ii ] <- -1 } # theta design for (tt in 1:TP){ Xdes[1:I, 2, tt, I + 1] <- theta.k[tt] } # skill space definition delta.designmatrix <- cbind( 1, theta.k^2 ) delta.fixed <- NULL Xlambda.init <- c( stats::runif( I, -.8, .8 ), 1 ) Xlambda.fixed <- cbind( I+1, 1 ) # estimate model mod1 <- CDM::slca( dat, Xdes=Xdes, delta.designmatrix=delta.designmatrix, delta.fixed=delta.fixed, Xlambda.fixed=Xlambda.fixed, Xlambda.init=Xlambda.init, decrease.increments=TRUE, maxiter=200 ) summary(mod1) #*** Model 1b: Constraint the sum of item difficulties to zero # change skill space definition delta.designmatrix <- cbind( 1, theta.k, theta.k^2 ) delta.fixed <- NULL # constrain sum of difficulties Xlambda parameters to zero Xlambda.constr.V <- matrix( 1, nrow=I+1, ncol=1 ) Xlambda.constr.V[I+1,1] <- 0 Xlambda.constr.c <- c(0) # estimate model mod1b <- CDM::slca( dat, Xdes=Xdes, delta.designmatrix=delta.designmatrix, Xlambda.fixed=Xlambda.fixed, Xlambda.constr.V=Xlambda.constr.V, Xlambda.constr.c=Xlambda.constr.c ) summary(mod1b) #*** Model 2: Mixed Rasch model with two latent classes NXlam <- 2*I +2 Xdes <- array( 0, dim=c(I, maxK, 2*TP, NXlam ) ) dimnames(Xdes)[[1]] <- colnames(dat) dimnames(Xdes)[[2]] <- paste0("Cat", 1:(maxK) ) dimnames(Xdes)[[4]] <- c( paste0( "bClass1_", colnames(dat)[1:I] ), paste0( "bClass2_", colnames(dat)[1:I] ), "aClass1", "aClass2" ) # define item difficulties for (ii in 1:I){ Xdes[ii, 2, 1:TP, ii ] <- -1 # first class Xdes[ii, 2, TP + 1:TP, I+ii ] <- -1 # second class } # theta design for (tt in 1:TP){ Xdes[1:I, 2, tt, 2*I+1 ] <- theta.k[tt] Xdes[1:I, 2, TP+tt, 2*I+2 ] <- theta.k[tt] } # skill space definition delta.designmatrix <- matrix( 0, nrow=2*TP, ncol=4 ) delta.designmatrix[1:TP,1] <- 1 delta.designmatrix[1:TP,2] <- theta.k^2 delta.designmatrix[TP + 1:TP,3] <- 1 delta.designmatrix[TP+ 1:TP,4] <- theta.k^2 b1 <- stats::qnorm( colMeans(dat) ) Xlambda.init <- c( stats::runif( 2*I, -1.8, 1.8 ), 1,1 ) Xlambda.fixed <- cbind( c(2*I+1, 2*I+2), 1 ) # estimate model mod2 <- CDM::slca( dat, Xdes=Xdes, delta.designmatrix=delta.designmatrix, Xlambda.fixed=Xlambda.fixed, decrease.increments=TRUE, Xlambda.init=Xlambda.init, maxiter=1000 ) summary(mod2) summary(mod1) # latent class proportions stats::aggregate( mod2$pi.k, list( rep(1:2, each=TP)), sum ) #*** Model 2b: Different parametrization with sum constraint on item difficulties # skill space definition delta.designmatrix <- matrix( 0, nrow=2*TP, ncol=6 ) delta.designmatrix[1:TP,1] <- 1 delta.designmatrix[1:TP,2] <- theta.k delta.designmatrix[1:TP,3] <- theta.k^2 delta.designmatrix[TP+ 1:TP,4] <- 1 delta.designmatrix[TP+ 1:TP,5] <- theta.k delta.designmatrix[TP+ 1:TP,6] <- theta.k^2 Xlambda.fixed <- cbind( c(2*I+1,2*I+2), c(1,1) ) b1 <- stats::qnorm( colMeans( dat ) ) Xlambda.init <- c( b1, b1 + stats::runif(I, -1, 1 ), 1, 1 ) # constraints on item difficulties Xlambda.constr.V <- matrix( 0, nrow=NXlam, ncol=2) Xlambda.constr.V[1:I, 1 ] <- 1 Xlambda.constr.V[I + 1:I, 2 ] <- 1 Xlambda.constr.c <- c(0,0) # estimate model mod2b <- CDM::slca( dat, Xdes=Xdes, delta.designmatrix=delta.designmatrix, Xlambda.fixed=Xlambda.fixed, Xlambda.init=Xlambda.init, Xlambda.constr.V=Xlambda.constr.V, Xlambda.constr.c=Xlambda.constr.c, decrease.increments=TRUE, maxiter=1000 ) summary(mod2b) stats::aggregate( mod2b$pi.k, list( rep(1:2, each=TP)), sum ) #*** Model 2c: Estimation with mRm package library(mRm) mod2c <- mRm::mrm(data.matrix=dat, cl=2) plot(mod2c) print(mod2c) #*** Model 2d: Estimation with psychomix package library(psychomix) mod2d <- psychomix::raschmix(data=dat, k=2, verbose=TRUE ) summary(mod2d) plot(mod2d) ############################################################################# # EXAMPLE 4: Located latent class model, Rasch model ############################################################################# set.seed(487) library(sirt) I <- 15 # I items b1 <- seq( -2, 2, len=I) # item difficulties N <- 4000 # number of persons # simulate 4 theta classes theta0 <- c( -2.5, -1, 0.3, 1.3 ) # skill classes probs0 <- c( .1, .4, .2, .3 ) TP <- length(theta0) theta <- theta0[ rep(1:TP, round(probs0*N) ) ] dat <- sirt::sim.raschtype( theta, b1 ) #*** Model 1: Located latent class model with 4 classes maxK <- 2 NXlam <- I + TP Xdes <- array( 0, dim=c(I, maxK, TP, NXlam ) ) dimnames(Xdes)[[1]] <- colnames(dat) dimnames(Xdes)[[2]] <- paste0("Cat", 1:(maxK) ) dimnames(Xdes)[[3]] <- paste0("Class", 1:TP ) dimnames(Xdes)[[4]] <- c( paste0( "b_", colnames(dat)[1:I] ), paste0("theta", 1:TP) ) # define item difficulties for (ii in 1:I){ Xdes[ii, 2,, ii ] <- -1 } # theta design for (tt in 1:TP){ Xdes[1:I, 2, tt, I + tt] <- 1 } # skill space definition delta.designmatrix <- diag(TP) Xlambda.init <- c( - stats::qnorm( colMeans(dat) ), seq(-2,1,len=TP) ) # constraint on item difficulties Xlambda.constr.V <- matrix( 0, nrow=NXlam, ncol=1) Xlambda.constr.V[1:I,1] <- 1 Xlambda.constr.c <- c(0) delta.init <- matrix( c(1,1,1,1), TP, 1 ) # estimate model mod1 <- CDM::slca( dat, Xdes=Xdes, delta.designmatrix=delta.designmatrix, delta.init=delta.init, Xlambda.init=Xlambda.init, Xlambda.constr.V=Xlambda.constr.V, Xlambda.constr.c=Xlambda.constr.c, decrease.increments=TRUE, maxiter=400 ) summary(mod1) # compare estimated and simulated theta class locations cbind( mod1$Xlambda[ - c(1:I) ], theta0 ) # compare estimated and simulated latent class proportions cbind( mod1$pi.k, probs0 ) ############################################################################# # EXAMPLE 5: DINA model with two skills ############################################################################# set.seed(487) N <- 3000 # number of persons # define Q-matrix I <- 9 # 9 items NS <- 2 # 2 skills TP <- 4 # number of skill classes Q <- scan( nlines=3) 1 0 1 0 1 0 0 1 0 1 0 1 1 1 1 1 1 1 Q <- matrix(Q, I, ncol=NS,byrow=TRUE) # define skill distribution alpha0 <- matrix( c(0,0,1,0,0,1,1,1), nrow=4,ncol=2,byrow=TRUE) prob0 <- c( .2, .4, .1, .3 ) alpha <- alpha0[ rep( 1:TP, prob0*N),] # define guessing and slipping parameters guess <- round( stats::runif(I, 0, .4 ), 2 ) slip <- round( stats::runif(I, 0, .3 ), 2 ) # simulate data according to the DINA model dat <- CDM::sim.din( q.matrix=Q, alpha=alpha, slip=slip, guess=guess )$dat # define Xlambda design matrix maxK <- 2 NXlam <- 2*I Xdes <- array( 0, dim=c(I, maxK, TP, NXlam ) ) dimnames(Xdes)[[1]] <- colnames(dat) dimnames(Xdes)[[2]] <- paste0("Cat", 1:(maxK) ) dimnames(Xdes)[[3]] <- c("S00","S10","S01","S11") dimnames(Xdes)[[4]] <- c( paste0("guess",1:I ), paste0( "antislip", 1:I ) ) dimnames(Xdes) # define item difficulties for (ii in 1:I){ # define latent responses latresp <- 1*( alpha0 %*% Q[ii,]==sum(Q[ii,]) )[,1] # model slipping parameters Xdes[ii, 2, latresp==1, I+ii ] <- 1 # guessing parameters Xdes[ii, 2, latresp==0, ii ] <- 1 } Xdes[1,2,,] Xdes[7,2,,] # skill space definition delta.designmatrix <- diag(TP) Xlambda.init <- c( rep( stats::qlogis( .2 ), I ), rep( stats::qlogis( .8 ), I ) ) # estimate DINA model with slca function mod1 <- CDM::slca( dat, Xdes=Xdes, delta.designmatrix=delta.designmatrix, Xlambda.init=Xlambda.init, decrease.increments=TRUE, maxiter=400 ) summary(mod1) # compare estimated and simulated latent class proportions cbind( mod1$pi.k, probs0 ) # compare estimated and simulated guessing parameters cbind( mod1$pjk[1,,2], guess ) # compare estimated and simulated slipping parameters cbind( 1 - mod1$pjk[4,,2], slip ) ############################################################################# # EXAMPLE 6: Investigating differential item functioning in Rasch models # with regularization ############################################################################# #---- simulate data set.seed(987) N <- 1000 # number of persons in a group I <- 20 # number of items #* population parameters of two groups mu1 <- 0 mu2 <- .6 sd1 <- 1.4 sd2 <- 1 # item difficulties b <- seq( -1.1, 1.1, len=I ) # define some DIF effects dif <- rep(0,I) dif[ c(3,6,9,12)] <- c( .6, -1, .75, -.35 ) print(dif) #* simulate datasets dat1 <- sirt::sim.raschtype( rnorm(N, mean=mu1, sd=sd1), b=b - dif /2 ) colnames(dat1) <- paste0("I", 1:I, "_G1") dat2 <- sirt::sim.raschtype( rnorm(N, mean=mu2, sd=sd2), b=b + dif /2 ) colnames(dat2) <- paste0("I", 1:I, "_G2") dat <- CDM::CDM_rbind_fill( dat1, dat2 ) dat <- data.frame( "group"=rep(1:2, each=N), dat ) #-- nodes for distribution theta.k <- seq(-4, 4, len=11) # define design matrix for lambda nitems <- ncol(dat) - 1 maxK <- 2 TP <- length(theta.k) NXlam <- 2*I + 1 Xdes <- array( 0, dim=c( nitems, maxK, TP, NXlam ) ) dimnames(Xdes)[[1]] <- colnames(dat)[-1] dimnames(Xdes)[[2]] <- paste0("Cat", 0:(maxK-1) ) dimnames(Xdes)[[3]] <- paste0("Theta", 1:TP ) dimnames(Xdes)[[4]] <- c( paste0("b", 1:I ), paste0("dif", 1:I ), "const" ) # define theta design for (ii in 1:nitems){ Xdes[ii,2,,NXlam ] <- theta.k } # item intercepts and DIF effects for (ii in 1:I){ Xdes[c(ii,ii+I),2,, ii ] <- -1 Xdes[ii,2,,ii+I] <- - 1/2 Xdes[ii+I,2,,ii+I] <- 1/2 } #--- skill space designmatrix TP <- length(theta.k) w1 <- stats::dnorm(theta.k) w1 <- w1 / sum(w1) delta.designmatrix <- matrix( 1, nrow=TP, ncol=2 ) delta.designmatrix[,2] <- log(w1) # fixed lambda parameters Xlambda.fixed <- cbind(NXlam, 1 ) # initial Xlambda parameters dif_sim <- 0*stats::rnorm(I, sd=.2) Xlambda.init <- c( - stats::qnorm( colMeans(dat1) ), dif_sim, 1 ) # delta.fixed delta.fixed <- cbind( 1, 1, 0 ) # regularization parameter regular_lam <- .2 # weighting vector: regularize only DIF effects regular_w <- c( rep(0,I), rep(1,I), 0 ) #--- estimation model with scad penalty mod1 <- CDM::slca( dat[,-1], group=dat$group, Xdes=Xdes, delta.designmatrix=delta.designmatrix, regular_type="scad", Xlambda.init=Xlambda.init, delta.fixed=delta.fixed, Xlambda.fixed=Xlambda.fixed, regular_lam=regular_lam, regular_w=regular_w ) # compare true and estimated DIF effects cbind( "true"=dif, "estimated"=round(coef(mod1)[seq(I+1,2*I)],2) ) summary(mod1) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.