The ConstantSolver class.
The ConstantSolver class.
## S4 method for signature 'ConstantSolver' mip_capable(solver) ## S4 method for signature 'ConstantSolver,Problem' accepts(object, problem) ## S4 method for signature 'ConstantSolver,Problem' perform(object, problem) ## S4 method for signature 'ConstantSolver,Solution,list' invert(object, solution, inverse_data) ## S4 method for signature 'ConstantSolver' name(x) ## S4 method for signature 'ConstantSolver' import_solver(solver) ## S4 method for signature 'ConstantSolver' is_installed(solver) ## S4 method for signature 'ConstantSolver' solve_via_data( object, data, warm_start, verbose, feastol, reltol, abstol, num_iter, solver_opts, solver_cache ) ## S4 method for signature 'ConstantSolver,ANY' reduction_solve(object, problem, warm_start, verbose, solver_opts)
solver, object, x |
A ConstantSolver object. |
problem |
A Problem object. |
solution |
A Solution object to invert. |
inverse_data |
A list containing data necessary for the inversion. |
data |
Data for the solver. |
warm_start |
A boolean of whether to warm start the solver. |
verbose |
A boolean of whether to enable solver verbosity. |
feastol |
The feasible tolerance. |
reltol |
The relative tolerance. |
abstol |
The absolute tolerance. |
num_iter |
The maximum number of iterations. |
solver_opts |
A list of Solver specific options |
solver_cache |
Cache for the solver. |
mip_capable
: Can the solver handle mixed-integer programs?
accepts
: Is the solver capable of solving the problem?
perform
: Returns a list of the ConstantSolver, Problem, and an empty list.
invert
: Returns the solution.
name
: Returns the name of the solver.
import_solver
: Imports the solver.
is_installed
: Is the solver installed?
solve_via_data
: Solve a problem represented by data returned from apply.
reduction_solve
: Solve the problem and return a Solution object.
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.