Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

CumMax-class

The CumMax class.


Description

This class represents the cumulative maximum of an expression.

Usage

CumMax(expr, axis = 2)

## S4 method for signature 'CumMax'
to_numeric(object, values)

## S4 method for signature 'CumMax'
.grad(object, values)

## S4 method for signature 'CumMax'
.column_grad(object, value)

## S4 method for signature 'CumMax'
dim_from_args(object)

## S4 method for signature 'CumMax'
sign_from_args(object)

## S4 method for signature 'CumMax'
get_data(object)

## S4 method for signature 'CumMax'
is_atom_convex(object)

## S4 method for signature 'CumMax'
is_atom_concave(object)

## S4 method for signature 'CumMax'
is_incr(object, idx)

## S4 method for signature 'CumMax'
is_decr(object, idx)

Arguments

expr

An Expression.

axis

A numeric vector indicating the axes along which to apply the function. For a 2D matrix, 1 indicates rows, 2 indicates columns, and c(1,2) indicates rows and columns.

object

A CumMax object.

values

A list of numeric values for the arguments

value

A numeric value.

idx

An index into the atom.

Methods (by generic)

  • to_numeric: The cumulative maximum along the axis.

  • .grad: Gives the (sub/super)gradient of the atom w.r.t. each variable

  • .column_grad: Gives the (sub/super)gradient of the atom w.r.t. each column variable

  • dim_from_args: The dimensions of the atom determined from its arguments.

  • sign_from_args: The (is positive, is negative) sign of the atom.

  • get_data: Returns the axis along which the cumulative max is taken.

  • is_atom_convex: Is the atom convex?

  • is_atom_concave: Is the atom concave?

  • is_incr: Is the atom weakly increasing in the index?

  • is_decr: Is the atom weakly decreasing in the index?

Slots

expr

An Expression.

axis

A numeric vector indicating the axes along which to apply the function. For a 2D matrix, 1 indicates rows, 2 indicates columns, and c(1,2) indicates rows and columns.


CVXR

Disciplined Convex Optimization

v1.0-10
Apache License 2.0 | file LICENSE
Authors
Anqi Fu [aut, cre], Balasubramanian Narasimhan [aut], David W Kang [aut], Steven Diamond [aut], John Miller [aut], Stephen Boyd [ctb], Paul Kunsberg Rosenfield [ctb]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.