Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

GUROBI_CONIC-class

An interface for the GUROBI conic solver.


Description

An interface for the GUROBI conic solver.

Usage

GUROBI_CONIC()

## S4 method for signature 'GUROBI_CONIC'
mip_capable(solver)

## S4 method for signature 'GUROBI_CONIC'
name(x)

## S4 method for signature 'GUROBI_CONIC'
import_solver(solver)

## S4 method for signature 'GUROBI_CONIC'
status_map(solver, status)

## S4 method for signature 'GUROBI_CONIC,Problem'
accepts(object, problem)

## S4 method for signature 'GUROBI_CONIC,Problem'
perform(object, problem)

## S4 method for signature 'GUROBI_CONIC,list,list'
invert(object, solution, inverse_data)

## S4 method for signature 'GUROBI_CONIC'
solve_via_data(
  object,
  data,
  warm_start,
  verbose,
  feastol,
  reltol,
  abstol,
  num_iter,
  solver_opts,
  solver_cache
)

Arguments

solver, object, x

A GUROBI_CONIC object.

status

A status code returned by the solver.

problem

A Problem object.

solution

The raw solution returned by the solver.

inverse_data

A list containing data necessary for the inversion.

data

Data generated via an apply call.

warm_start

A boolean of whether to warm start the solver.

verbose

A boolean of whether to enable solver verbosity.

feastol

The feasible tolerance.

reltol

The relative tolerance.

abstol

The absolute tolerance.

num_iter

The maximum number of iterations.

solver_opts

A list of Solver specific options

solver_cache

Cache for the solver.

Methods (by generic)

  • mip_capable: Can the solver handle mixed-integer programs?

  • name: Returns the name of the solver.

  • import_solver: Imports the solver.

  • status_map: Converts status returned by the GUROBI solver to its respective CVXPY status.

  • accepts: Can GUROBI_CONIC solve the problem?

  • perform: Returns a new problem and data for inverting the new solution.

  • invert: Returns the solution to the original problem given the inverse_data.

  • solve_via_data: Solve a problem represented by data returned from apply.


CVXR

Disciplined Convex Optimization

v1.0-10
Apache License 2.0 | file LICENSE
Authors
Anqi Fu [aut, cre], Balasubramanian Narasimhan [aut], David W Kang [aut], Steven Diamond [aut], John Miller [aut], Stephen Boyd [ctb], Paul Kunsberg Rosenfield [ctb]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.