Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

MatrixFrac-class

The MatrixFrac class.


Description

The matrix fraction function tr(X^T P^{-1} X).

Usage

MatrixFrac(X, P)

## S4 method for signature 'MatrixFrac'
allow_complex(object)

## S4 method for signature 'MatrixFrac'
to_numeric(object, values)

## S4 method for signature 'MatrixFrac'
validate_args(object)

## S4 method for signature 'MatrixFrac'
dim_from_args(object)

## S4 method for signature 'MatrixFrac'
sign_from_args(object)

## S4 method for signature 'MatrixFrac'
is_atom_convex(object)

## S4 method for signature 'MatrixFrac'
is_atom_concave(object)

## S4 method for signature 'MatrixFrac'
is_incr(object, idx)

## S4 method for signature 'MatrixFrac'
is_decr(object, idx)

## S4 method for signature 'MatrixFrac'
is_quadratic(object)

## S4 method for signature 'MatrixFrac'
is_qpwa(object)

## S4 method for signature 'MatrixFrac'
.domain(object)

## S4 method for signature 'MatrixFrac'
.grad(object, values)

Arguments

X

An Expression or numeric matrix.

P

An Expression or numeric matrix.

object

A MatrixFrac object.

values

A list of numeric values for the arguments

idx

An index into the atom.

Methods (by generic)

  • allow_complex: Does the atom handle complex numbers?

  • to_numeric: The trace of X^TP^{-1}X.

  • validate_args: Check that the dimensions of x and P match.

  • dim_from_args: The atom is a scalar.

  • sign_from_args: The atom is positive.

  • is_atom_convex: The atom is convex.

  • is_atom_concave: The atom is not concave.

  • is_incr: The atom is not monotonic in any argument.

  • is_decr: The atom is not monotonic in any argument.

  • is_quadratic: True if x is affine and P is constant.

  • is_qpwa: True if x is piecewise linear and P is constant.

  • .domain: Returns constraints describing the domain of the node

  • .grad: Gives the (sub/super)gradient of the atom w.r.t. each variable

Slots

X

An Expression or numeric matrix.

P

An Expression or numeric matrix.


CVXR

Disciplined Convex Optimization

v1.0-10
Apache License 2.0 | file LICENSE
Authors
Anqi Fu [aut, cre], Balasubramanian Narasimhan [aut], David W Kang [aut], Steven Diamond [aut], John Miller [aut], Stephen Boyd [ctb], Paul Kunsberg Rosenfield [ctb]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.