The Power class.
This class represents the elementwise power function f(x) = x^p.
If expr
is a CVXR expression, then expr^p
is equivalent to Power(expr, p)
.
Power(x, p, max_denom = 1024) ## S4 method for signature 'Power' to_numeric(object, values) ## S4 method for signature 'Power' sign_from_args(object) ## S4 method for signature 'Power' is_atom_convex(object) ## S4 method for signature 'Power' is_atom_concave(object) ## S4 method for signature 'Power' is_atom_log_log_convex(object) ## S4 method for signature 'Power' is_atom_log_log_concave(object) ## S4 method for signature 'Power' is_constant(object) ## S4 method for signature 'Power' is_incr(object, idx) ## S4 method for signature 'Power' is_decr(object, idx) ## S4 method for signature 'Power' is_quadratic(object) ## S4 method for signature 'Power' is_qpwa(object) ## S4 method for signature 'Power' .grad(object, values) ## S4 method for signature 'Power' .domain(object) ## S4 method for signature 'Power' get_data(object) ## S4 method for signature 'Power' copy(object, args = NULL, id_objects = list()) ## S4 method for signature 'Power' name(x)
x |
The Expression to be raised to a power. |
p |
A numeric value indicating the scalar power. |
max_denom |
The maximum denominator considered in forming a rational approximation of |
object |
A Power object. |
values |
A list of numeric values for the arguments |
idx |
An index into the atom. |
args |
A list of arguments to reconstruct the atom. If args=NULL, use the current args of the atom |
id_objects |
Currently unused. |
For p = 0, f(x) = 1, constant, positive.
For p = 1, f(x) = x, affine, increasing, same sign as x.
For p = 2,4,8,..., f(x) = |x|^p, convex, signed monotonicity, positive.
For p < 0 and f(x) =
x^p for x > 0
+∞x ≤q 0
, this function is convex, decreasing, and positive.
For 0 < p < 1 and f(x) =
x^p for x ≥q 0
-∞x < 0
, this function is concave, increasing, and positive.
For p > 1, p \neq 2,4,8,… and f(x) =
x^p for x ≥q 0
+∞x < 0
, this function is convex, increasing, and positive.
to_numeric
: Throw an error if the power is negative and cannot be handled.
sign_from_args
: The sign of the atom.
is_atom_convex
: Is p ≤q 0 or p ≥q 1?
is_atom_concave
: Is p ≥q 0 or p ≤q 1?
is_atom_log_log_convex
: Is the atom log-log convex?
is_atom_log_log_concave
: Is the atom log-log concave?
is_constant
: A logical value indicating whether the atom is constant.
is_incr
: A logical value indicating whether the atom is weakly increasing.
is_decr
: A logical value indicating whether the atom is weakly decreasing.
is_quadratic
: A logical value indicating whether the atom is quadratic.
is_qpwa
: A logical value indicating whether the atom is quadratic of piecewise affine.
.grad
: Gives the (sub/super)gradient of the atom w.r.t. each variable
.domain
: Returns constraints describng the domain of the node
get_data
: A list containing the output of pow_low, pow_mid
, or pow_high
depending on the input power.
copy
: Returns a shallow copy of the power atom
name
: Returns the expression in string form.
x
The Expression to be raised to a power.
p
A numeric value indicating the scalar power.
max_denom
The maximum denominator considered in forming a rational approximation of p
.
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.