Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

dot-decomp_quad

Compute a Matrix Decomposition.


Description

Compute sgn, scale, M such that P = sgn * scale * dot(M, t(M)).

Usage

.decomp_quad(P, cond = NA, rcond = NA)

Arguments

P

A real symmetric positive or negative (semi)definite input matrix

cond

Cutoff for small eigenvalues. Singular values smaller than rcond * largest_eigenvalue are considered negligible.

rcond

Cutoff for small eigenvalues. Singular values smaller than rcond * largest_eigenvalue are considered negligible.

Value

A list consisting of induced matrix 2-norm of P and a rectangular matrix such that P = scale * (dot(M1, t(M1)) - dot(M2, t(M2)))


CVXR

Disciplined Convex Optimization

v1.0-10
Apache License 2.0 | file LICENSE
Authors
Anqi Fu [aut, cre], Balasubramanian Narasimhan [aut], David W Kang [aut], Steven Diamond [aut], John Miller [aut], Stephen Boyd [ctb], Paul Kunsberg Rosenfield [ctb]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.