Logistic Function
The elementwise logistic function, \log(1 + e^x). This is a special case of log(sum(exp)) that evaluates to a vector rather than to a scalar, which is useful for logistic regression.
logistic(x)
x |
An Expression, vector, or matrix. |
An Expression representing the logistic function evaluated at the input.
set.seed(92) n <- 20 m <- 1000 sigma <- 45 beta_true <- stats::rnorm(n) idxs <- sample(n, size = 0.8*n, replace = FALSE) beta_true[idxs] <- 0 X <- matrix(stats::rnorm(m*n, 0, 5), nrow = m, ncol = n) y <- sign(X %*% beta_true + stats::rnorm(m, 0, sigma)) beta <- Variable(n) X_sign <- apply(X, 2, function(x) { ifelse(y <= 0, -1, 1) * x }) obj <- -sum(logistic(-X[y <= 0,] %*% beta)) - sum(logistic(X[y == 1,] %*% beta)) prob <- Problem(Maximize(obj)) result <- solve(prob) log_odds <- result$getValue(X %*% beta) beta_res <- result$getValue(beta) y_probs <- 1/(1 + exp(-X %*% beta_res)) log(y_probs/(1 - y_probs))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.