Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

RleArray-class

RleArray objects


Description

The RleArray class is a DelayedArray subclass for representing an in-memory Run Length Encoded array-like dataset.

All the operations available for DelayedArray objects work on RleArray objects.

Usage

## Constructor function:
RleArray(data, dim, dimnames, chunksize=NULL)

Arguments

data

An Rle object, or an ordinary list of Rle objects, or an RleList object, or a DataFrame object where all the columns are Rle objects. More generally speaking, data can be any list-like object where all the list elements are Rle objects.

dim

The dimensions of the object to be created, that is, an integer vector of length one or more giving the maximal indices in each dimension.

dimnames

The dimnames of the object to be created. Must be NULL or a list of length the number of dimensions. Each list element must be either NULL or a character vector along the corresponding dimension.

chunksize

Experimental. Don't use!

Value

An RleArray object.

See Also

Examples

## ---------------------------------------------------------------------
## A. BASIC EXAMPLE
## ---------------------------------------------------------------------

data <- Rle(sample(6L, 500000, replace=TRUE), 8)
a <- array(data, dim=c(50, 20, 4000))  # array() expands the Rle object
                                       # internally with as.vector()

A <- RleArray(data, dim=c(50, 20, 4000))  # Rle object is NOT expanded
A

object.size(a)
object.size(A)

stopifnot(identical(a, as.array(A)))

as(A, "Rle")  # deconstruction

toto <- function(x) (5 * x[ , , 1] ^ 3 + 1L) * log(x[, , 2])
m1 <- toto(a)
head(m1)

M1 <- toto(A)  # very fast! (operations are delayed)
M1

stopifnot(identical(m1, as.array(M1)))

cs <- colSums(m1)
CS <- colSums(M1)
stopifnot(identical(cs, CS))

## Coercing a DelayedMatrix object to DataFrame produces a DataFrame
## object with Rle columns:
as(M1, "DataFrame")

## ---------------------------------------------------------------------
## B. MAKING AN RleArray OBJECT FROM A LIST-LIKE OBJECT OF Rle OBJECTS
## ---------------------------------------------------------------------

## From a DataFrame object:
DF <- DataFrame(A=Rle(sample(3L, 100, replace=TRUE)),
                B=Rle(sample(3L, 100, replace=TRUE)),
                C=Rle(sample(3L, 100, replace=TRUE) - 0.5),
                row.names=sprintf("ID%03d", 1:100))

M2 <- RleArray(DF)
M2

A3 <- RleArray(DF, dim=c(25, 6, 2))
A3

M4 <- RleArray(DF, dim=c(25, 12), dimnames=list(LETTERS[1:25], NULL))
M4

## From an ordinary list:
## If all the supplied Rle objects have the same length and if the 'dim'
## argument is not specified, then the RleArray() constructor returns an
## RleMatrix object with 1 column per Rle object. If the 'dimnames'
## argument is not specified, then the names on the list are propagated
## as the colnames of the returned object.
data <- as.list(DF)
M2b <- RleArray(data)
A3b <- RleArray(data, dim=c(25, 6, 2))
M4b <- RleArray(data, dim=c(25, 12), dimnames=list(LETTERS[1:25], NULL))

data2 <- list(Rle(sample(3L, 9, replace=TRUE)) * 11L,
              Rle(sample(3L, 15, replace=TRUE)))
## Not run: 
  RleArray(data2)  # error! (cannot infer the dim)

## End(Not run)
RleArray(data2, dim=c(4, 6))

## From an RleList object:
data <- RleList(data)
M2c <- RleArray(data)
A3c <- RleArray(data, dim=c(25, 6, 2))
M4c <- RleArray(data, dim=c(25, 12), dimnames=list(LETTERS[1:25], NULL))

data2 <- RleList(data2)
## Not run: 
  RleArray(data2)  # error! (cannot infer the dim)

## End(Not run)
RleArray(data2, dim=4:2)

## Sanity checks:
data0 <- as.vector(unlist(DF, use.names=FALSE))
m2 <- matrix(data0, ncol=3, dimnames=dimnames(M2))
stopifnot(identical(m2, as.matrix(M2)))
rownames(m2) <- NULL
stopifnot(identical(m2, as.matrix(M2b)))
stopifnot(identical(m2, as.matrix(M2c)))
a3 <- array(data0, dim=c(25, 6, 2))
stopifnot(identical(a3, as.array(A3)))
stopifnot(identical(a3, as.array(A3b)))
stopifnot(identical(a3, as.array(A3c)))
m4 <- matrix(data0, ncol=12, dimnames=dimnames(M4))
stopifnot(identical(m4, as.matrix(M4)))
stopifnot(identical(m4, as.matrix(M4b)))
stopifnot(identical(m4, as.matrix(M4c)))

## ---------------------------------------------------------------------
## C. COERCING FROM RleList OR DataFrame TO RleMatrix
## ---------------------------------------------------------------------

## Coercing an RleList object to RleMatrix only works if all the list
## elements in the former have the same length.
x <- RleList(A=Rle(sample(3L, 20, replace=TRUE)),
             B=Rle(sample(3L, 20, replace=TRUE)))
M <- as(x, "RleMatrix")
stopifnot(identical(x, as(M, "RleList")))

x <- DataFrame(A=x[[1]], B=x[[2]], row.names=letters[1:20])
M <- as(x, "RleMatrix")
stopifnot(identical(x, as(M, "DataFrame")))

## ---------------------------------------------------------------------
## D. CONSTRUCTING A LARGE RleArray OBJECT
## ---------------------------------------------------------------------

## The RleArray() constructor does not accept a "long" Rle object (i.e.
## an object of length > .Machine$integer.max) at the moment:
## Not run: 
  RleArray(Rle(5, 3e9), dim=c(3, 1e9))  # error!

## End(Not run)

## The workaround is to supply a list of Rle objects instead:

toy_Rle <- function() {
  run_lens <- c(sample(4), sample(rep(c(1:19, 40) * 3, 6e4)), sample(4))
  run_vals <- sample(700, length(run_lens), replace=TRUE) / 5
  Rle(run_vals, run_lens)
}
rle_list <- lapply(1:80, function(j) toy_Rle())  # takes about 20 sec.

## Cumulative length of all the Rle objects is > .Machine$integer.max:
sum(lengths(rle_list))  # 3.31e+09

## Feed 'rle_list' to the RleArray() constructor:
dim <- c(14395, 320, 719)
A <- RleArray(rle_list, dim)
A

## Because all the Rle objects in 'rle_list' have the same length, we
## can call RleArray() on it without specifying the 'dim' argument. This
## returns an RleMatrix object where each column corresponds to an Rle
## object in 'rle_list':
M <- RleArray(rle_list)
M
stopifnot(identical(as(rle_list, "RleList"), as(M, "RleList")))

## ---------------------------------------------------------------------
## E. CHANGING THE TYPE OF AN RleArray OBJECT FROM "double" TO "integer"
## ---------------------------------------------------------------------

## An RleArray object is an in-memory object so it can be useful to
## reduce its memory footprint. For an object of type "double" this can
## be done by changing its type to "integer" (integers are half the size
## of doubles in memory). Of course this only makes sense if this results
## in a loss of precision that is acceptable.
## On an ordinary array (or matrix) 'a', this is simply a matter of
## doing 'storage.mode(a) <- "integer"'. However, with a DelayedArray
## object, things are a little bit different. Let's do this on a subset
## of the RleMatrix object 'M' created in the previous section.

M1 <- as(M[1:6e5, ], "RleMatrix")
rm(M)

## First of all, it's important to be aware that object.size() (from
## package utils) is NOT reliable on RleArray objects! This is because
## the data in an RleArray object is stored in an environment and
## object.size() stubbornly refuses to take the content of an environment
## into account when computing its size:
object.size(list2env(list(aa=1:10)))   # 56 bytes
object.size(list2env(list(aa=1:1e6)))  # always 56 bytes!

## So we'll use object_size() instead (from package pryr):
library(pryr)
object_size(list2env(list(aa=1:10)))   # 264 B
object_size(list2env(list(aa=1:1e6)))  # 4 MB
object_size(list2env(list(aa=as.double(1:1e6))))  # 8 MB

object_size(M1)  # 16.7 MB

type(M1) <- "integer"  # Delayed!
M1                     # Note the class: it's no longer RleMatrix!
                       # (That's because the object now carries delayed
                       # operations.)

## Because changing the type is a delayed operation, the memory footprint
## of the object has not changed yet (remember that the original data in
## a DelayedArray object is stored in its "seed" and its seed is never
## modified **in-place**, that is, no operation on the object will ever
## modify its seed):
object_size(M1)  # Still the same (well, a very tiny more, because the
                 # object is now carrying one more delayed operation,
                 # the `type<-` operation)

## To effectively reduce the memory footprint of the object, a new object
## needs to be created. This is achieved simply by **realizing** M1 as a
## (new) RleArray object. Note that this realization will use block
## processing:

DelayedArray:::set_verbose_block_processing(TRUE)  # See block processing
                                                   # in action.
getAutoBlockSize()      # Automatic block size (100 Mb by default).
setAutoBlockSize(20e6)  # Set automatic block size to 20 Mb.

M2 <- as(M1, "RleArray")
DelayedArray:::set_verbose_block_processing(FALSE)
setAutoBlockSize()      # Reset automatic block size to factory settings.


M2
object_size(M2)  # 6.91 MB (Less than half the original size! This is
                 # because RleArray objects use some internal tricks to
                 # reduce memory footprint even more when the data in
                 # their seed is of type "integer".)

## Finally note that the 2-step approach described here (i.e.
## type(A) <- "integer" followed by realization) is generic and works
## on any kind of DelayedArray object or derivative. In particular,
## after doing 'type(A) <- "integer"', 'A' can be realized as anything
## as long as the realization backend is supported (e.g. could be
## 'as(A, "HDF5Array")' or 'as(A, "TENxMatrix")') and realization will
## always use block processing so the array data will never be fully
## loaded in memory.

DelayedArray

A unified framework for working transparently with on-disk and in-memory array-like datasets

v0.16.3
Artistic-2.0
Authors
Hervé Pagès <hpages.on.github@gmail.com>, with contributions from Peter Hickey <peter.hickey@gmail.com> and Aaron Lun <infinite.monkeys.with.keyboards@gmail.com>
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.