Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

Lambda

Goodman Kruskal Lambda


Description

Calculate symmetric and asymmetric Goodman Kruskal lambda and their confidence intervals. Lamdba is a measure of proportional reduction in error in cross tabulation analysis. For any sample with a nominal independent variable and dependent variable (or ones that can be treated nominally), it indicates the extent to which the modal categories and frequencies for each value of the independent variable differ from the overall modal category and frequency, i.e. for all values of the independent variable together

Usage

Lambda(x, y = NULL, direction = c("symmetric", "row", "column"), conf.level = NA, ...)

Arguments

x

a numeric vector, a matrix or a table.

y

NULL (default) or a vector with compatible dimensions to x. If y is provided, table(x, y, ...) is calculated.

direction

type of lambda. Can be one out of "symmetric" (default), "row", "column" (abbreviations are allowed). If direction is set to "row" then Lambda(R|C) (column dependent) will be reported. See details.

conf.level

confidence level for the returned confidence interval, restricted to lie between 0 and 1.

...

further arguments are passed to the function table, allowing i.e. to set
useNA = c("no", "ifany", "always").

Details

Asymmetric lambda is interpreted as the probable improvement in predicting the column variable Y given knowledge of the row variable X.
The nondirectional lambda is the average of the two asymmetric lambdas, Lambda(C|R) and Lambda(R|C). Lambda (asymmetric and symmetric) has a scale ranging from 0 to 1.

Data can be passed to the function either as matrix or data.frame in x, or as two numeric vectors x and y. In the latter case table(x, y, ...) is calculated. Thus NAs are handled the same way as table does. Note that tables are by default calculated without NAs (which breaks the package's law to in general not omit NAs silently). The specific argument useNA can be passed via the ... argument.
PairApply can be used to calculate pairwise lambdas.

Value

if no confidence intervals are requested: the estimate as numeric value

else a named numeric vector with 3 elements

lambda

estimate

lwr.ci

lower confidence interval

upr.ci

upper confidence interval

Author(s)

Andri Signorell <andri@signorell.net> based on code from Antti Arppe <antti.arppe@helsinki.fi>,
Nanina Anderegg (confidence interval symmetric lambda)

References

Agresti, A. (2002) Categorical Data Analysis. John Wiley & Sons

Goodman, L. A., Kruskal W. H. (1979) Measures of Association for Cross Classifications. New York: Springer-Verlag (contains articles appearing in J. Amer. Statist. Assoc. in 1954, 1959, 1963, 1972).
http://www.nssl.noaa.gov/users/brooks/public_html/feda/papers/goodmankruskal1.pdf (might be outdated)

Liebetrau, A. M. (1983) Measures of Association, Sage University Papers Series on Quantitative Applications in the Social Sciences, 07-004. Newbury Park, CA: Sage, pp. 17–24

See Also

Examples

# example from Goodman Kruskal (1954)
m <- as.table(cbind(c(1768,946,115), c(807,1387,438), c(189,746,288), c(47,53,16)))
dimnames(m) <- list(paste("A", 1:3), paste("B", 1:4))
m

# direction default is "symmetric"
Lambda(m)
Lambda(m, conf.level=0.95)

Lambda(m, direction="row")
Lambda(m, direction="column")

DescTools

Tools for Descriptive Statistics

v0.99.41
GPL (>= 2)
Authors
Andri Signorell [aut, cre], Ken Aho [ctb], Andreas Alfons [ctb], Nanina Anderegg [ctb], Tomas Aragon [ctb], Chandima Arachchige [ctb], Antti Arppe [ctb], Adrian Baddeley [ctb], Kamil Barton [ctb], Ben Bolker [ctb], Hans W. Borchers [ctb], Frederico Caeiro [ctb], Stephane Champely [ctb], Daniel Chessel [ctb], Leanne Chhay [ctb], Nicholas Cooper [ctb], Clint Cummins [ctb], Michael Dewey [ctb], Harold C. Doran [ctb], Stephane Dray [ctb], Charles Dupont [ctb], Dirk Eddelbuettel [ctb], Claus Ekstrom [ctb], Martin Elff [ctb], Jeff Enos [ctb], Richard W. Farebrother [ctb], John Fox [ctb], Romain Francois [ctb], Michael Friendly [ctb], Tal Galili [ctb], Matthias Gamer [ctb], Joseph L. Gastwirth [ctb], Vilmantas Gegzna [ctb], Yulia R. Gel [ctb], Sereina Graber [ctb], Juergen Gross [ctb], Gabor Grothendieck [ctb], Frank E. Harrell Jr [ctb], Richard Heiberger [ctb], Michael Hoehle [ctb], Christian W. Hoffmann [ctb], Soeren Hojsgaard [ctb], Torsten Hothorn [ctb], Markus Huerzeler [ctb], Wallace W. Hui [ctb], Pete Hurd [ctb], Rob J. Hyndman [ctb], Christopher Jackson [ctb], Matthias Kohl [ctb], Mikko Korpela [ctb], Max Kuhn [ctb], Detlew Labes [ctb], Friederich Leisch [ctb], Jim Lemon [ctb], Dong Li [ctb], Martin Maechler [ctb], Arni Magnusson [ctb], Ben Mainwaring [ctb], Daniel Malter [ctb], George Marsaglia [ctb], John Marsaglia [ctb], Alina Matei [ctb], David Meyer [ctb], Weiwen Miao [ctb], Giovanni Millo [ctb], Yongyi Min [ctb], David Mitchell [ctb], Franziska Mueller [ctb], Markus Naepflin [ctb], Daniel Navarro [ctb], Henric Nilsson [ctb], Klaus Nordhausen [ctb], Derek Ogle [ctb], Hong Ooi [ctb], Nick Parsons [ctb], Sandrine Pavoine [ctb], Tony Plate [ctb], Luke Prendergast [ctb], Roland Rapold [ctb], William Revelle [ctb], Tyler Rinker [ctb], Brian D. Ripley [ctb], Caroline Rodriguez [ctb], Nathan Russell [ctb], Nick Sabbe [ctb], Ralph Scherer [ctb], Venkatraman E. Seshan [ctb], Michael Smithson [ctb], Greg Snow [ctb], Karline Soetaert [ctb], Werner A. Stahel [ctb], Alec Stephenson [ctb], Mark Stevenson [ctb], Ralf Stubner [ctb], Matthias Templ [ctb], Duncan Temple Lang [ctb], Terry Therneau [ctb], Yves Tille [ctb], Luis Torgo [ctb], Adrian Trapletti [ctb], Joshua Ulrich [ctb], Kevin Ushey [ctb], Jeremy VanDerWal [ctb], Bill Venables [ctb], John Verzani [ctb], Pablo J. Villacorta Iglesias [ctb], Gregory R. Warnes [ctb], Stefan Wellek [ctb], Hadley Wickham [ctb], Rand R. Wilcox [ctb], Peter Wolf [ctb], Daniel Wollschlaeger [ctb], Joseph Wood [ctb], Ying Wu [ctb], Thomas Yee [ctb], Achim Zeileis [ctb]
Initial release
2021-04-09

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.