Interactive Q-Learning
The complete interactive Q-Learning algorithm.
## Second-Stage Analysis iqLearnSS(..., moMain, moCont, data, response, txName, iter = 0L, verbose = TRUE) ## First-Stage Analysis for Fitted Main Effects iqLearnFSM(..., moMain, moCont, data, response, txName, iter = 0L, verbose = TRUE) ## First-Stage Analysis for Fitted Contrasts iqLearnFSC(..., moMain, moCont, data, response, txName, iter = 0L, verbose = TRUE) ## First-Stage Analysis of Contrast Variance Log-Linear Model iqLearnFSV(..., object, moMain, moCont, data, iter = 0L, verbose = TRUE)
... |
ignored. Provided to require named inputs. |
moMain |
An object of class modelObj or a list of objects of class modelObjSubset, which define the models and R methods to be used to obtain parameter estimates and predictions for the main effects component of the outcome regression. See ?modelObj and/or ?modelObjSubset for details. NULL is an acceptable value if moCont is defined. |
moCont |
An object of class modelObj or a list of objects of class modelObjSubset, which define the models and R methods to be used to obtain parameter estimates and predictions for the contrasts component of the outcome regression. See ?modelObj and/or ?modelObjSubset for details. NULL is an acceptable value if moMain is defined. |
data |
A data frame of covariates and treatment history. |
response |
For the second stage analysis, the response vector. For first stage analyses, the value object returned by iqLearnSS(). |
object |
The value object returned by iqLearFSC() |
txName |
A character string giving column header of treatment variable in data |
iter |
An integer. See ?iter for details |
verbose |
A logical. If TRUE, screen prints are generated. |
Laber, EB, Linn, KA, and Stefanski, LA (2014). Interactive model building for Q-Learning. Biometrika, 101, 831–847. PMCID: PMC4274394.
Other statistical methods:
bowl()
,
earl()
,
optimalClass()
,
optimalSeq()
,
owl()
,
qLearn()
,
rwl()
Other multiple decision point methods:
bowl()
,
optimalClass()
,
optimalSeq()
,
qLearn()
# Load and process data set data(bmiData) # define the negative 12 month change in BMI from baseline y12 <- -100*(bmiData[,6L] - bmiData[,4L])/bmiData[,4L] #### Full Interactive Q-Learning Algorithm ### Second-Stage Analysis # outcome model moMain <- buildModelObj(model = ~parentBMI+month4BMI, solver.method = 'lm') moCont <- buildModelObj(model = ~race + parentBMI+month4BMI, solver.method = 'lm') fitSS <- iqLearnSS(moMain = moMain, moCont = moCont, data = bmiData, response = y12, txName = 'A2') ### First-Stage Analysis Main Effects Term # main effects model moMain <- buildModelObj(model = ~parentBMI+baselineBMI, solver.method = 'lm') moCont <- buildModelObj(model = ~race + parentBMI+baselineBMI, solver.method = 'lm') fitFSM <- iqLearnFSM(moMain = moMain, moCont = moCont, data = bmiData, response = fitSS, txName = 'A1') ### First-Stage Analysis Contrasts Term # contrasts model moMain <- buildModelObj(model = ~parentBMI+baselineBMI, solver.method = 'lm') moCont <- buildModelObj(model = ~race + parentBMI+baselineBMI, solver.method = 'lm') fitFSC <- iqLearnFSC(moMain = moMain, moCont = moCont, data = bmiData, response = fitSS, txName = 'A1') ### First-Stage Analysis Contrasts Variance - Log-linear # contrasts variance model moMain <- buildModelObj(model = ~baselineBMI, solver.method = 'lm') moCont <- buildModelObj(model = ~baselineBMI, solver.method = 'lm') fitFSV <- iqLearnFSV(object = fitFSC, moMain = moMain, moCont = moCont, data = bmiData) ####Available methods ### Estimated value estimator(x = fitFSC, y = fitFSM, z = fitFSV, w = fitSS, dens = 'nonpar') ## Estimated optimal treatment and decision functions for training data ## Second stage optimal treatments optTx(x = fitSS) ## First stage optimal treatments when contrast variance is modeled. optTx(x = fitFSM, y = fitFSC, z = fitFSV, dens = 'nonpar') ## First stage optimal treatments when contrast variance is constant. optTx(x = fitFSM, y = fitFSC, dens = 'nonpar') ## Estimated optimal treatment and decision functions for new data ## Second stage optimal treatments optTx(x = fitSS, bmiData) ## First stage optimal treatments when contrast variance is modeled. optTx(x = fitFSM, y = fitFSC, z = fitFSV, dens = 'nonpar', bmiData) ## First stage optimal treatments when contrast variance is constant. optTx(x = fitFSM, y = fitFSC, dens = 'nonpar', bmiData) ### The following methods are available for all objects: fitSS, fitFSM, ### fitFSC and fitFSV. We include only one here for illustration. # Coefficients of the outcome regression objects coef(object = fitSS) # Description of method used to obtain object DTRstep(object = fitFSM) # Value object returned by outcome regression method fitObject(object = fitFSC) # Value object returned by outcome regression method outcome(object = fitFSV) # Plots if defined by outcome regression method dev.new() par(mfrow = c(2,4)) plot(x = fitSS) plot(x = fitSS, suppress = TRUE) # Show main results of method show(object = fitFSM) # Show summary results of method summary(object = fitFSV)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.