S3 Class "gofOutlier"
Objects of S3 class "gofOutlier"
are returned by the EnvStats function
rosnerTest
.
Objects of S3 class "gofOutlier"
are lists that contain
information about the assumed distribution, the test statistics,
the Type I error level, and the number of outliers detected.
Required Components
The following components must be included in a legitimate list of
class "gofOutlier"
.
distribution |
a character string indicating the name of the
assumed distribution (see |
statistic |
a numeric vector with a names attribute containing the names and values of the outlier test statistic for each outlier tested. |
sample.size |
a numeric scalar containing the number of non-missing observations in the sample used for the outlier test. |
parameters |
numeric vector with a names attribute containing
the name(s) and value(s) of the parameter(s) associated with the
test statistic given in the |
alpha |
numeric scalar indicating the Type I error level. |
crit.value |
numeric vector containing the critical values associated with the test for each outlier. |
alternative |
character string indicating the alternative hypothesis. |
method |
character string indicating the name of the outlier test. |
data |
numeric vector containing the data actually used for the outlier test (i.e., the original data without any missing or infinite values). |
data.name |
character string indicating the name of the data object used for the goodness-of-fit test. |
all.stats |
data frame containing all of the results of the test. |
Optional Components
The following component is included when the data object
contains missing (NA
), undefined (NaN
) and/or infinite
(Inf
, -Inf
) values.
bad.obs |
numeric scalar indicating the number of missing ( |
Generic functions that have methods for objects of class
"gofOutlier"
include: print
.
Since objects of class "gofOutlier"
are lists, you may extract
their components with the $
and [[
operators.
Steven P. Millard (EnvStats@ProbStatInfo.com)
# Create an object of class "gofOutlier", then print it out. # (Note: the call to set.seed simply allows you to reproduce # this example.) set.seed(250) dat <- c(rnorm(30, mean = 3, sd = 2), rnorm(3, mean = 10, sd = 1)) gofOutlier.obj <- rosnerTest(dat, k = 4) mode(gofOutlier.obj) #[1] "list" class(gofOutlier.obj) #[1] "gofOutlier" names(gofOutlier.obj) # [1] "distribution" "statistic" "sample.size" "parameters" # [5] "alpha" "crit.value" "n.outliers" "alternative" # [9] "method" "data" "data.name" "bad.obs" #[13] "all.stats" gofOutlier.obj #Results of Outlier Test #------------------------- # #Test Method: Rosner's Test for Outliers # #Hypothesized Distribution: Normal # #Data: dat # #Sample Size: 33 # #Test Statistics: R.1 = 2.848514 # R.2 = 3.086875 # R.3 = 3.033044 # R.4 = 2.380235 # #Test Statistic Parameter: k = 4 # #Alternative Hypothesis: Up to 4 observations are not # from the same Distribution. # #Type I Error: 5% # #Number of Outliers Detected: 3 # # i Mean.i SD.i Value Obs.Num R.i+1 lambda.i+1 Outlier #1 0 3.549744 2.531011 10.7593656 33 2.848514 2.951949 TRUE #2 1 3.324444 2.209872 10.1460427 31 3.086875 2.938048 TRUE #3 2 3.104392 1.856109 8.7340527 32 3.033044 2.923571 TRUE #4 3 2.916737 1.560335 -0.7972275 25 2.380235 2.908473 FALSE #========== # Extract the data frame with all the test results #------------------------------------------------- gofOutlier.obj$all.stats # i Mean.i SD.i Value Obs.Num R.i+1 lambda.i+1 Outlier #1 0 3.549744 2.531011 10.7593656 33 2.848514 2.951949 TRUE #2 1 3.324444 2.209872 10.1460427 31 3.086875 2.938048 TRUE #3 2 3.104392 1.856109 8.7340527 32 3.033044 2.923571 TRUE #4 3 2.916737 1.560335 -0.7972275 25 2.380235 2.908473 FALSE #========== # Clean up #--------- rm(dat, gofOutlier.obj)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.