Plots for a Sampling Design Based on a Simultaneous Nonparametric Prediction Interval
Create plots involving sample size (n), number of future observations (m), minimum number of future observations the interval should contain (k), number of future sampling occasions (r), and confidence level (1-α) for a simultaneous nonparametric prediction interval.
plotPredIntNparSimultaneousDesign(x.var = "n", y.var = "conf.level", range.x.var = NULL, n = max(25, lpl.rank + n.plus.one.minus.upl.rank + 1), n.median = 1, k = 1, m = ifelse(x.var == "k", ceiling(max.x), 1), r = 2, rule = "k.of.m", conf.level = 0.95, pi.type = "upper", lpl.rank = ifelse(pi.type == "upper", 0, 1), n.plus.one.minus.upl.rank = ifelse(pi.type == "lower", 0, 1), n.max = 5000, maxiter = 1000, integrate.args.list = NULL, plot.it = TRUE, add = FALSE, n.points = 100, plot.col = "black", plot.lwd = 3 * par("cex"), plot.lty = 1, digits = .Options$digits, cex.main = par("cex"), ..., main = NULL, xlab = NULL, ylab = NULL, type = "l")
x.var |
character string indicating what variable to use for the x-axis.
Possible values are |
y.var |
character string indicating what variable to use for the y-axis.
Possible values are |
range.x.var |
numeric vector of length 2 indicating the range of the x-variable to use
for the plot. The default value depends on the value of |
n |
numeric scalar indicating the sample size. The default value is |
n.median |
positive odd integer specifying the sample size associated with the future medians.
The default value is |
k |
for the k-of-m rule ( |
m |
positive integer specifying the maximum number of future observations (or
medians) on one future sampling “occasion”.
The default value is |
r |
positive integer specifying the number of future sampling “occasions”.
The default value is |
rule |
character string specifying which rule to use. The possible values are
|
conf.level |
numeric scalar between 0 and 1 indicating the confidence level
associated with the prediction interval. The default value is
|
pi.type |
character string indicating what kind of prediction interval to compute.
The possible values are |
lpl.rank |
non-negative integer indicating the rank of the order statistic to use for
the lower bound of the prediction interval. If |
n.plus.one.minus.upl.rank |
non-negative integer related to the rank of the order statistic to use for
the upper bound of the prediction interval. A value of
|
n.max |
numeric scalar indicating the maximum sample size to consider when |
maxiter |
positive integer indicating the maximum number of iterations to use in the
|
integrate.args.list |
list of arguments to supply to the |
plot.it |
a logical scalar indicating whether to create a plot or add to the
existing plot (see |
add |
a logical scalar indicating whether to add the design plot to the
existing plot ( |
n.points |
a numeric scalar specifying how many (x,y) pairs to use to produce the plot.
There are |
plot.col |
a numeric scalar or character string determining the color of the plotted
line or points. The default value is |
plot.lwd |
a numeric scalar determining the width of the plotted line. The default value is
|
plot.lty |
a numeric scalar determining the line type of the plotted line. The default value is
|
digits |
a scalar indicating how many significant digits to print out on the plot. The default
value is the current setting of |
cex.main, main, xlab, ylab, type, ... |
additional graphical parameters (see |
See the help file for predIntNparSimultaneous
,
predIntNparSimultaneousConfLevel
, and predIntNparSimultaneousN
for information on how to compute a
simultaneous nonparametric prediction interval, how the confidence level
is computed when other quantities are fixed, and how the sample size is
computed when other quantities are fixed.
plotPredIntNparSimultaneousDesign
invisibly returns a list with components
x.var
and y.var
, giving coordinates of the points that
have been or would have been plotted.
See the help file for predIntNparSimultaneous
.
Steven P. Millard (EnvStats@ProbStatInfo.com)
See the help file for predIntNparSimultaneous
.
# For the 1-of-3 rule with r=20 future sampling occasions, look at the # relationship between confidence level and sample size for a one-sided # upper simultaneous nonparametric prediction interval. dev.new() plotPredIntNparSimultaneousDesign(k = 1, m = 3, r = 20, range.x.var = c(2, 20)) #========== # Plot confidence level vs. sample size for various values of number of # future sampling occasions (r): dev.new() plotPredIntNparSimultaneousDesign(m = 3, r = 10, rule = "CA", ylim = c(0, 1), main = "") plotPredIntNparSimultaneousDesign(m = 3, r = 20, rule = "CA", add = TRUE, plot.col = "red") plotPredIntNparSimultaneousDesign(m = 3, r = 30, rule = "CA", add = TRUE, plot.col = "blue") legend("bottomright", c("r=10", "r=20", "r=30"), lty = 1, lwd = 3 * par("cex"), col = c("black", "red", "blue"), bty = "n") title(main = paste("Confidence Level vs. Sample Size for Simultaneous", "Nonparametric PI with Various Values of r", sep="\n")) #========== # Modifying Example 19-5 of USEPA (2009, p. 19-33), plot confidence level # versus sample size (number of background observations requried) for # a 1-of-3 plan assuming r = 10 compliance wells (future sampling occasions). dev.new() plotPredIntNparSimultaneousDesign(k = 1, m = 3, r = 10, rule = "k.of.m") #========== # Clean up #--------- graphics.off()
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.