S4 class Representing a Fuzzy Number
Formally, a fuzzy number A (Dubois, Prade, 1987) is a fuzzy subset of the real line R with membership function μ given by:
| 0 | if x < a1, | |
| left((x-a1)/(a2-a1)) | if a1 ≤ x < a2, | |
μ(x) = | | 1 | if a2 ≤ x ≤ a3, |
| right((x-a3)/(a4-a3)) | if a3 < x ≤ a4, | |
| 0 | if a4 < x, | |
where a1,a2,a3,a4\in R, a1 ≤ a2 ≤ a3 ≤ a4, left: [0,1]->[0,1] is a nondecreasing function called the left side generator of A, and right: [0,1]->[1,0] is a nonincreasing function called the right side generator of A. Note that this is a so-called L-R representation of a fuzzy number.
Alternatively, it may be shown that each fuzzy number A may be uniquely determined by specifying its α-cuts, A(α). We have A(0)=[a1,a4] and
A(α)=[a1+(a2-a1)*lower(α), a3+(a4-a3)*upper(α)]
for 0<α≤ 1, where lower: [0,1]->[0,1] and upper: [0,1]->[1,0] are, respectively, strictly increasing and decreasing functions satisfying lower(α)=inf(x: μ(x)≥α) and upper(α)=sup(x: μ(x)≥α).
Please note that many algorithms that deal with fuzzy numbers often use α-cuts rather than side functions.
Note that the FuzzyNumbers package also deals with particular types of fuzzy numbers like trapezoidal, piecewise linear, or “parametric” FNs.
a1
:Single numeric value specifying the left bound for the support.
a2
:Single numeric value specifying the left bound for the core.
a3
:Single numeric value specifying the right bound for the core.
a4
:Single numeric value specifying the right bound for the support.
lower
:A nondecreasing function [0,1]->[0,1] that gives the lower alpha-cut bound.
upper
:A nonincreasing function [0,1]->[1,0] that gives the upper alpha-cut bound.
left
:A nondecreasing function [0,1]->[0,1] that gives the left side function.
right
:A nonincreasing function [0,1]->[1,0] that gives the right side function.
Dubois D., Prade H. (1987), Fuzzy numbers: An overview, In: Analysis of Fuzzy Information. Mathematical Logic, vol. I, CRC Press, pp. 3-39.
FuzzyNumber
for a convenient constructor, and
as.FuzzyNumber
for conversion of objects to this class.
Also, see convertSide
for creating side functions generators,
convertAlpha
for creating alpha-cut bounds generators,
approxInvert
for inverting side functions/alpha-cuts numerically.
Other FuzzyNumber-method: Arithmetic
,
FuzzyNumber
, alphaInterval
,
alphacut
, ambiguity
,
as.FuzzyNumber
,
as.PiecewiseLinearFuzzyNumber
,
as.PowerFuzzyNumber
,
as.TrapezoidalFuzzyNumber
,
as.character
, core
,
distance
, evaluate
,
expectedInterval
,
expectedValue
,
integrateAlpha
,
piecewiseLinearApproximation
,
plot
, show
,
supp
,
trapezoidalApproximation
,
value
, weightedExpectedValue
,
width
showClass("FuzzyNumber") showMethods(classes="FuzzyNumber")
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.