Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

DTM

Experimental function for diagnostic multiple-strategy CDMs


Description

This function estimates the diagnostic tree model (Ma, 2018) for polytomous responses with multiple strategies. It is an experimental function, and will be further optimized.

Usage

DTM(
  dat,
  Qc,
  delta = NULL,
  Tmatrix = NULL,
  conv.crit = 0.001,
  conv.type = "pr",
  maxitr = 1000
)

Arguments

dat

A required N \times J data matrix of N examinees to J items. Missing values are currently not allowed.

Qc

A required J \times K+2 category and attribute association matrix, where J represents the number of items or nonzero categories and K represents the number of attributes. Entry 1 indicates that the attribute is measured by the item, and 0 otherwise. The first column gives the item number, which must be numeric and match the number of column in the data. The second column indicates the category number.

delta

initial item parameters

Tmatrix

The mapping matrix showing the relation between the OBSERVED responses (rows) and the PSEDUO items (columns); The first column gives the observed responses.

conv.crit

The convergence criterion for max absolute change in item parameters.

conv.type

convergence criteria; Can be pr,LL and delta, indicating category response function, log-likelihood and delta parameters,respectively.

maxitr

The maximum iterations allowed.

Author(s)

Wenchao Ma, The University of Alabama, wenchao.ma@ua.edu

References

Ma, W. (2018). A Diagnostic Tree Model for Polytomous Responses with Multiple Strategies. British Journal of Mathematical and Statistical Psychology.

See Also

GDINA for MS-DINA model and single strategy CDMs, and GMSCDM for generalized multiple strategies CDMs for dichotomous response data

Examples

## Not run: 
K=5
g=0.2
item.no <- rep(1:6,each=4)
# the first node has three response categories: 0, 1 and 2
node.no <- rep(c(1,1,2,3),6)
Q1 <- matrix(0,length(item.no),K)
Q2 <- cbind(7:(7+K-1),rep(1,K),diag(K))
for(j in 1:length(item.no)) {
  Q1[j,sample(1:K,sample(3,1))] <- 1
}
Qc <- rbind(cbind(item.no,node.no,Q1),Q2)
Tmatrix.set <- list(cbind(c(0,1,2,3,3),c(0,1,2,1,2),c(NA,0,NA,1,NA),c(NA,NA,0,NA,1)),
cbind(c(0,1,2,3,4),c(0,1,2,1,2),c(NA,0,NA,1,NA),c(NA,NA,0,NA,1)),
cbind(c(0,1),c(0,1)))
Tmatrix <- Tmatrix.set[c(1,1,1,1,1,1,rep(3,K))]
sim <- simDTM(N=2000,Qc=Qc,gs.parm=matrix(0.2,nrow(Qc),2),Tmatrix=Tmatrix)
est <- DTM(dat=sim$dat,Qc=Qc,Tmatrix = Tmatrix)

## End(Not run)

GDINA

The Generalized DINA Model Framework

v2.8.0
GPL-3
Authors
Wenchao Ma [aut, cre, cph], Jimmy de la Torre [aut, cph], Miguel Sorrel [ctb], Zhehan Jiang [ctb]
Initial release
2020-05-23

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.