Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

bootSE

Calculating standard errors and variance-covariance matrix using bootstrap methods


Description

This function conducts nonparametric and parametric bootstrap to calculate standard errors of model parameters. Parametric bootstrap is only applicable to single group models.

Usage

bootSE(GDINA.obj, bootsample = 50, type = "nonparametric", randomseed = 12345)

Arguments

GDINA.obj

an object of class GDINA

bootsample

the number of bootstrap samples

type

type of bootstrap method. Can be parametric or nonparametric

randomseed

random seed for resampling

Value

itemparm.se standard errors for item probability of success in list format

delta.se standard errors for delta parameters in list format

lambda.se standard errors for structural parameters of joint attribute distribution

boot.est resample estimates

Author(s)

Wenchao Ma, The University of Alabama, wenchao.ma@ua.edu

References

Ma, W., & de la Torre, J. (2020). GDINA: An R Package for Cognitive Diagnosis Modeling. Journal of Statistical Software, 93(14), 1-26.

Examples

## Not run: 
# For illustration, only 5 resamples are run
# results are definitely not reliable

dat <- sim30GDINA$simdat
Q <- sim30GDINA$simQ
fit <- GDINA(dat = dat, Q = Q, model = "GDINA",att.dist = "higher.order")
boot.fit <- bootSE(fit,bootsample = 5,randomseed=123)
boot.fit$delta.se
boot.fit$lambda.se

## End(Not run)

GDINA

The Generalized DINA Model Framework

v2.8.0
GPL-3
Authors
Wenchao Ma [aut, cre, cph], Jimmy de la Torre [aut, cph], Miguel Sorrel [ctb], Zhehan Jiang [ctb]
Initial release
2020-05-23

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.