Calculating standard errors and variance-covariance matrix using bootstrap methods
This function conducts nonparametric and parametric bootstrap to calculate standard errors of model parameters. Parametric bootstrap is only applicable to single group models.
bootSE(GDINA.obj, bootsample = 50, type = "nonparametric", randomseed = 12345)
GDINA.obj |
an object of class GDINA |
bootsample |
the number of bootstrap samples |
type |
type of bootstrap method. Can be |
randomseed |
random seed for resampling |
itemparm.se standard errors for item probability of success in list format
delta.se standard errors for delta parameters in list format
lambda.se standard errors for structural parameters of joint attribute distribution
boot.est resample estimates
Wenchao Ma, The University of Alabama, wenchao.ma@ua.edu
Ma, W., & de la Torre, J. (2020). GDINA: An R Package for Cognitive Diagnosis Modeling. Journal of Statistical Software, 93(14), 1-26.
## Not run: # For illustration, only 5 resamples are run # results are definitely not reliable dat <- sim30GDINA$simdat Q <- sim30GDINA$simQ fit <- GDINA(dat = dat, Q = Q, model = "GDINA",att.dist = "higher.order") boot.fit <- bootSE(fit,bootsample = 5,randomseed=123) boot.fit$delta.se boot.fit$lambda.se ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.