Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

fun.RMFMKL.ml.m

Fit RS generalised lambda distribution to data set using maximum likelihood estimation


Description

This function fits FMKL generalised lambda distribution to data set using maximum likelihood estimation using faster implementation through C programming

Usage

fun.RMFMKL.ml.m(data, fmkl.init = c(-0.25, 1.5), leap = 3, FUN = "runif.sobol", 
no = 10000)

Arguments

data

Dataset to be fitted

fmkl.init

Initial values for FMKL distribution optimization, c(-0.25,1.5) tends to work well.

leap

Scrambling (0,1,2,3) for the Sobol sequence for the distribution fit. See scrambling/leap argument for runif.sobol, runif.halton or QUnif.

FUN

A character string of either "runif.sobol" (default), "runif.halton" or "QUnif".

no

Number of initial random values to find the best initial values for optimisation.

Details

This function provides one of the definitive fit to data set using generalised lambda distributions.

Value

A vector representing four parameters of the FMKL generalised lambda distribution.

Author(s)

Steve Su

References

Su, S. (2007). Numerical Maximum Log Likelihood Estimation for Generalized Lambda Distributions. Journal of Computational statistics and data analysis 51(8) 3983-3998.

Su (2007). Fitting Single and Mixture of Generalized Lambda Distributions to Data via Discretized and Maximum Likelihood Methods: GLDEX in R. Journal of Statistical Software: *21* 9.

See Also

Examples

## Fitting the normal distribution
# fun.RMFMKL.ml.m(data=rnorm(1000,2,3),fmkl.init=c(-0.25,1.5),leap=3)

GLDEX

Fitting Single and Mixture of Generalised Lambda Distributions (RS and FMKL) using Various Methods

v2.0.0.7
GPL (>= 3)
Authors
Steve Su, with contributions from: Diethelm Wuertz, Martin Maechler and Rmetrics core team members for low discrepancy algorithm, Juha Karvanen for L moments codes, Robert King for gld C codes and starship codes, Benjamin Dean for corrections and input in ks.gof code and R core team for histsu function.
Initial release
2020-02-04

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.