Pairing the elements of a GAlignments object
Utilities for pairing the elements of a GAlignments object.
NOTE: Until BioC 2.13, findMateAlignment
was the power horse used
by readGAlignmentPairs
for pairing the records loaded
from a BAM file containing aligned paired-end reads.
Starting with BioC 2.14, readGAlignmentPairs
relies
on scanBam(BamFile(asMates=TRUE), ...)
for the
pairing.
findMateAlignment(x) makeGAlignmentPairs(x, use.names=FALSE, use.mcols=FALSE, strandMode=1) ## Related low-level utilities: getDumpedAlignments() countDumpedAlignments() flushDumpedAlignments()
x |
A named GAlignments object with metadata columns param <- ScanBamParam(what=c("flag", "mrnm", "mpos")) x <- readGAlignments(..., use.names=TRUE, param=param) |
use.names |
Whether the names on the input object should be propagated to the returned object or not. |
use.mcols |
Names of the metadata columns to propagate to the returned GAlignmentPairs object. |
strandMode |
Strand mode to set on the returned GAlignmentPairs object.
See |
findMateAlignment
is the power horse used by makeGAlignmentPairs
for pairing the records loaded from a BAM file containing aligned paired-end
reads.
It implements the following pairing algorithm:
First, only records with flag bit 0x1 (multiple segments) set to 1,
flag bit 0x4 (segment unmapped) set to 0, and flag bit 0x8 (next
segment in the template unmapped) set to 0, are candidates for
pairing (see the SAM Spec for a description of flag bits and fields).
findMateAlignment
will ignore any other record. That is,
records that correspond to single-end reads, or records that
correspond to paired-end reads where one or both ends are unmapped,
are discarded.
Then the algorithm looks at the following fields and flag bits:
(A) QNAME
(B) RNAME, RNEXT
(C) POS, PNEXT
(D) Flag bits Ox10 (segment aligned to minus strand) and 0x20 (next segment aligned to minus strand)
(E) Flag bits 0x40 (first segment in template) and 0x80 (last segment in template)
(F) Flag bit 0x2 (proper pair)
(G) Flag bit 0x100 (secondary alignment)
2 records rec1 and rec2 are considered mates iff all the following conditions are satisfied:
(A) QNAME(rec1) == QNAME(rec2)
(B) RNEXT(rec1) == RNAME(rec2) and RNEXT(rec2) == RNAME(rec1)
(C) PNEXT(rec1) == POS(rec2) and PNEXT(rec2) == POS(rec1)
(D) Flag bit 0x20 of rec1 == Flag bit 0x10 of rec2 and Flag bit 0x20 of rec2 == Flag bit 0x10 of rec1
(E) rec1 corresponds to the first segment in the template and rec2 corresponds to the last segment in the template, OR, rec2 corresponds to the first segment in the template and rec1 corresponds to the last segment in the template
(F) rec1 and rec2 have same flag bit 0x2
(G) rec1 and rec2 have same flag bit 0x100
The estimated timings and memory requirements on a modern Linux system are (those numbers may vary depending on your hardware and OS):
nb of alignments | time | required memory -----------------+--------------+---------------- 8 millions | 28 sec | 1.4 GB 16 millions | 58 sec | 2.8 GB 32 millions | 2 min | 5.6 GB 64 millions | 4 min 30 sec | 11.2 GB
This is for a GAlignments object coming from a file with an
"average nb of records per unique QNAME" of 2.04. A value of 2 (which means
the file contains only primary reads) is optimal for the pairing algorithm.
A greater value, say > 3, will significantly degrade its performance.
An easy way to avoid this degradation is to load only primary alignments
by setting the isSecondaryAlignment
flag to FALSE
in
ScanBamParam(). See examples in ?readGAlignmentPairs
for how
to do this.
The above algorithm will find almost all pairs unambiguously, even when the same pair of reads maps to several places in the genome. Note that, when a given pair maps to a single place in the genome, looking at (A) is enough to pair the 2 corresponding records. The additional conditions (B), (C), (D), (E), (F), and (G), are only here to help in the situation where more than 2 records share the same QNAME. And that works most of the times. Unfortunately there are still situations where this is not enough to solve the pairing problem unambiguously.
For example, here are 4 records (loaded in a GAlignments object) that cannot be paired with the above algorithm:
Showing the 4 records as a GAlignments object of length 4:
GAlignments with 4 alignments and 2 metadata columns: seqnames strand cigar qwidth start end <Rle> <Rle> <character> <integer> <integer> <integer> SRR031714.2658602 chr2R + 21M384N16M 37 6983850 6984270 SRR031714.2658602 chr2R + 21M384N16M 37 6983850 6984270 SRR031714.2658602 chr2R - 13M372N24M 37 6983858 6984266 SRR031714.2658602 chr2R - 13M378N24M 37 6983858 6984272 width njunc | mrnm mpos <integer> <integer> | <factor> <integer> SRR031714.2658602 421 1 | chr2R 6983858 SRR031714.2658602 421 1 | chr2R 6983858 SRR031714.2658602 409 1 | chr2R 6983850 SRR031714.2658602 415 1 | chr2R 6983850
Note that the BAM fields show up in the following columns:
QNAME: the names of the GAlignments object (unnamed col)
RNAME: the seqnames col
POS: the start col
RNEXT: the mrnm col
PNEXT: the mpos col
As you can see, the aligner has aligned the same pair to the same location twice! The only difference between the 2 aligned pairs is in the CIGAR i.e. one end of the pair is aligned twice to the same location with exactly the same CIGAR while the other end of the pair is aligned twice to the same location but with slightly different CIGARs.
Now showing the corresponding flag bits:
isPaired isProperPair isUnmappedQuery hasUnmappedMate isMinusStrand [1,] 1 1 0 0 0 [2,] 1 1 0 0 0 [3,] 1 1 0 0 1 [4,] 1 1 0 0 1 isMateMinusStrand isFirstMateRead isSecondMateRead isSecondaryAlignment [1,] 1 0 1 0 [2,] 1 0 1 0 [3,] 0 1 0 0 [4,] 0 1 0 0 isNotPassingQualityControls isDuplicate [1,] 0 0 [2,] 0 0 [3,] 0 0 [4,] 0 0
As you can see, rec(1) and rec(2) are second mates, rec(3) and rec(4) are both first mates. But looking at (A), (B), (C), (D), (E), (F), and (G), the pairs could be rec(1) <-> rec(3) and rec(2) <-> rec(4), or they could be rec(1) <-> rec(4) and rec(2) <-> rec(3). There is no way to disambiguate!
So findMateAlignment
is just ignoring (with a warning) those alignments
with ambiguous pairing, and dumping them in a place from which they can be
retrieved later (i.e. after findMateAlignment
has returned) for
further examination (see "Dumped alignments" subsection below for the details).
In other words, alignments that cannot be paired unambiguously are not paired
at all. Concretely, this means that readGAlignmentPairs
is
guaranteed to return a GAlignmentPairs object
where every pair was formed in an non-ambiguous way. Note that, in practice,
this approach doesn't seem to leave aside a lot of records because ambiguous
pairing events seem pretty rare.
Alignments with ambiguous pairing are dumped in a place ("the dump
environment") from which they can be retrieved with
getDumpedAlignments()
after findMateAlignment
has returned.
Two additional utilities are provided for manipulation of the dumped
alignments: countDumpedAlignments
for counting them (a fast equivalent
to length(getDumpedAlignments())
), and flushDumpedAlignments
to
flush "the dump environment". Note that "the dump environment" is
automatically flushed at the beginning of a call to findMateAlignment
.
For findMateAlignment
: An integer vector of the same length as
x
, containing only positive or NA values, where the i-th element
is interpreted as follow:
An NA value means that no mate or more than 1 mate was found for
x[i]
.
A non-NA value j gives the index in x
of x[i]
's mate.
For makeGAlignmentPairs
: A GAlignmentPairs object where the
pairs are formed internally by calling findMateAlignment
on x
.
For getDumpedAlignments
: NULL
or a GAlignments object
containing the dumped alignments. See "Dumped alignments" subsection in
the "Details" section above for the details.
For countDumpedAlignments
: The number of dumped alignments.
Nothing for flushDumpedAlignments
.
Hervé Pagès
GAlignments and GAlignmentPairs objects.
bamfile <- system.file("extdata", "ex1.bam", package="Rsamtools", mustWork=TRUE) param <- ScanBamParam(what=c("flag", "mrnm", "mpos")) x <- readGAlignments(bamfile, use.names=TRUE, param=param) mate <- findMateAlignment(x) head(mate) table(is.na(mate)) galp0 <- makeGAlignmentPairs(x) galp <- makeGAlignmentPairs(x, use.name=TRUE, use.mcols="flag") galp colnames(mcols(galp)) colnames(mcols(first(galp))) colnames(mcols(last(galp)))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.