Computation of posterior residual outlying probabilities for a linear regression model
Computes the posterior probabilities that Bayesian residuals exceed a cutoff value for a linear regression model with a noninformative prior
bayesresiduals(lmfit,post,k)
lmfit |
output of the regression function lm |
post |
list with components beta, matrix of simulated draws of regression parameter, and sigma, vector of simulated draws of sampling standard deviation |
k |
cut-off value that defines an outlier |
vector of posterior outlying probabilities
Jim Albert
chirps=c(20,16.0,19.8,18.4,17.1,15.5,14.7,17.1,15.4,16.2,15,17.2,16,17,14.1) temp=c(88.6,71.6,93.3,84.3,80.6,75.2,69.7,82,69.4,83.3,78.6,82.6,80.6,83.5,76.3) X=cbind(1,chirps) lmfit=lm(temp~X) m=1000 post=blinreg(temp,X,m) k=2 bayesresiduals(lmfit,post,k)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.