Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

betabinexch

Log posterior of logit mean and log precision for Binomial/beta exchangeable model


Description

Computes the log posterior density of logit mean and log precision for a Binomial/beta exchangeable model

Usage

betabinexch(theta,data)

Arguments

theta

vector of parameter values of logit eta and log K

data

a matrix with columns y (counts) and n (sample sizes)

Value

value of the log posterior

Author(s)

Jim Albert

Examples

n=c(20,20,20,20,20)
y=c(1,4,3,6,10)
data=cbind(y,n)
theta=c(-1,0)
betabinexch(theta,data)

LearnBayes

Functions for Learning Bayesian Inference

v2.15.1
GPL (>= 2)
Authors
Jim Albert
Initial release
2018-03-18

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.