Log posterior of mean and precision for Binomial/beta exchangeable model
Computes the log posterior density of mean and precision for a Binomial/beta exchangeable model
betabinexch0(theta,data)
theta |
vector of parameter values of eta and K |
data |
a matrix with columns y (counts) and n (sample sizes) |
value of the log posterior
Jim Albert
n=c(20,20,20,20,20) y=c(1,4,3,6,10) data=cbind(y,n) theta=c(.1,10) betabinexch0(theta,data)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.