Log posterior for a binary response model with a logistic link and a uniform prior
Computes the log posterior density of (beta0, beta1) when yi are independent binomial(ni, pi) and logit(pi)=beta0+beta1*xi and a uniform prior is placed on (beta0, beta1)
logisticpost(beta,data)
beta |
vector of parameter values beta0 and beta1 |
data |
matrix of columns of covariate values x, sample sizes n, and number of successes y |
value of the log posterior
Jim Albert
x = c(-0.86,-0.3,-0.05,0.73) n = c(5,5,5,5) y = c(0,1,3,5) data = cbind(x, n, y) beta=c(2,10) logisticpost(beta,data)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.