Computes the posterior for normal sampling and a mixture of normals prior
Computes the parameters and mixing probabilities for a normal sampling problem, variance known, where the prior is a discrete mixture of normal densities.
normal.normal.mix(probs,normalpar,data)
probs |
vector of probabilities of the normal components of the prior |
normalpar |
matrix where each row contains the mean and variance parameters for a normal component of the prior |
data |
vector of observation and sampling variance |
probs |
vector of probabilities of the normal components of the posterior |
normalpar |
matrix where each row contains the mean and variance parameters for a normal component of the posterior |
Jim Albert
probs=c(.5, .5) normal.par1=c(0,1) normal.par2=c(2,.5) normalpar=rbind(normal.par1,normal.par2) y=1; sigma2=.5 data=c(y,sigma2) normal.normal.mix(probs,normalpar,data)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.