Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

dose.p

Predict Doses for Binomial Assay model


Description

Calibrate binomial assays, generalizing the calculation of LD50.

Usage

dose.p(obj, cf = 1:2, p = 0.5)

Arguments

obj

A fitted model object of class inheriting from "glm".

cf

The terms in the coefficient vector giving the intercept and coefficient of (log-)dose

p

Probabilities at which to predict the dose needed.

Value

An object of class "glm.dose" giving the prediction (attribute "p" and standard error (attribute "SE") at each response probability.

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Springer.

Examples

ldose <- rep(0:5, 2)
numdead <- c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16)
sex <- factor(rep(c("M", "F"), c(6, 6)))
SF <- cbind(numdead, numalive = 20 - numdead)
budworm.lg0 <- glm(SF ~ sex + ldose - 1, family = binomial)

dose.p(budworm.lg0, cf = c(1,3), p = 1:3/4)
dose.p(update(budworm.lg0, family = binomial(link=probit)),
       cf = c(1,3), p = 1:3/4)

MASS

Support Functions and Datasets for Venables and Ripley's MASS

v7.3-54
GPL-2 | GPL-3
Authors
Brian Ripley [aut, cre, cph], Bill Venables [ctb], Douglas M. Bates [ctb], Kurt Hornik [trl] (partial port ca 1998), Albrecht Gebhardt [trl] (partial port ca 1998), David Firth [ctb]
Initial release
2021-04-17

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.