Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

boxcox

Box-Cox Transformations for Linear Models


Description

Computes and optionally plots profile log-likelihoods for the parameter of the Box-Cox power transformation.

Usage

boxcox(object, ...)

## Default S3 method:
boxcox(object, lambda = seq(-2, 2, 1/10), plotit = TRUE,
       interp, eps = 1/50, xlab = expression(lambda),
       ylab = "log-Likelihood", ...)

## S3 method for class 'formula'
boxcox(object, lambda = seq(-2, 2, 1/10), plotit = TRUE,
       interp, eps = 1/50, xlab = expression(lambda),
       ylab = "log-Likelihood", ...)

## S3 method for class 'lm'
boxcox(object, lambda = seq(-2, 2, 1/10), plotit = TRUE,
       interp, eps = 1/50, xlab = expression(lambda),
       ylab = "log-Likelihood", ...)

Arguments

object

a formula or fitted model object. Currently only lm and aov objects are handled.

lambda

vector of values of lambda – default (-2, 2) in steps of 0.1.

plotit

logical which controls whether the result should be plotted.

interp

logical which controls whether spline interpolation is used. Default to TRUE if plotting with lambda of length less than 100.

eps

Tolerance for lambda = 0; defaults to 0.02.

xlab

defaults to "lambda".

ylab

defaults to "log-Likelihood".

...

additional parameters to be used in the model fitting.

Value

A list of the lambda vector and the computed profile log-likelihood vector, invisibly if the result is plotted.

Side Effects

If plotit = TRUE plots log-likelihood vs lambda and indicates a 95% confidence interval about the maximum observed value of lambda. If interp = TRUE, spline interpolation is used to give a smoother plot.

References

Box, G. E. P. and Cox, D. R. (1964) An analysis of transformations (with discussion). Journal of the Royal Statistical Society B, 26, 211–252.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

Examples

boxcox(Volume ~ log(Height) + log(Girth), data = trees,
       lambda = seq(-0.25, 0.25, length = 10))

boxcox(Days+1 ~ Eth*Sex*Age*Lrn, data = quine,
       lambda = seq(-0.05, 0.45, len = 20))

MASS

Support Functions and Datasets for Venables and Ripley's MASS

v7.3-54
GPL-2 | GPL-3
Authors
Brian Ripley [aut, cre, cph], Bill Venables [ctb], Douglas M. Bates [ctb], Kurt Hornik [trl] (partial port ca 1998), Albrecht Gebhardt [trl] (partial port ca 1998), David Firth [ctb]
Initial release
2021-04-17

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.