Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

MxCI-class

MxCI Class


Description

MxCI is an S4 class. An MxCI object is a named entity. New instances of this class can be created using the function mxCI. MxCI objects may be used as arguments in the mxModel function.

Details

The MxCI class has the following slots:

reference - The name of the object
lowerdelta - Either a matrix or a data frame
upperdelta - A vector for means, or NA if missing

The reference slot contains a character vector of named free parameters, MxMatrices and MxAlgebras on which confidence intervals are desired. Individual elements of MxMatrices and MxAlgebras may be listed as well, using the syntax “matrix[row,col]” (see Extract for more information).

The lowerdelta and upperdelta slots give the changes in likelihoods used to define the confidence interval. The upper bound of the likelihood-based confidence interval is estimated by increasing the parameter estimate, leaving all other parameters free, until the model -2 log likelihood increased by ‘upperdelta’. The lower bound of the confidence interval is estimated by decreasing the parameter estimate, leaving all other parameters free, until the model -2 log likelihood increased by ‘lowerdata’.

Likelihood-based confidence intervals may be specified by including one or more MxCI objects in an MxModel object. Estimation of confidence intervals requires model optimization using the mxRun function with the ‘intervals’ argument set to TRUE. The calculation of likelihood-based confidence intervals can be computationally intensive, and may add a significant amount of time to model estimation when many confidence intervals are requested.

References

The OpenMx User's guide can be found at http://openmx.ssri.psu.edu/documentation.

See Also

mxCI for creating MxCI objects. More information about the OpenMx package may be found here.


OpenMx

Extended Structural Equation Modelling

v2.19.5
Apache License (== 2.0)
Authors
Steven M. Boker [aut], Michael C. Neale [aut], Hermine H. Maes [aut], Michael J. Wilde [ctb], Michael Spiegel [aut], Timothy R. Brick [aut], Ryne Estabrook [aut], Timothy C. Bates [aut], Paras Mehta [ctb], Timo von Oertzen [ctb], Ross J. Gore [aut], Michael D. Hunter [aut], Daniel C. Hackett [ctb], Julian Karch [ctb], Andreas M. Brandmaier [ctb], Joshua N. Pritikin [aut, cre], Mahsa Zahery [aut], Robert M. Kirkpatrick [aut], Yang Wang [ctb], Ben Goodrich [ctb], Charles Driver [ctb], Massachusetts Institute of Technology [cph], S. G. Johnson [cph], Association for Computing Machinery [cph], Dieter Kraft [cph], Stefan Wilhelm [cph], Sarah Medland [cph], Carl F. Falk [cph], Matt Keller [cph], Manjunath B G [cph], The Regents of the University of California [cph], Lester Ingber [cph], Wong Shao Voon [cph], Juan Palacios [cph], Jiang Yang [cph], Gael Guennebaud [cph], Jitse Niesen [cph]
Initial release
2021-03-26

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.