Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

mxMarginalPoisson

Indicator with marginal Poisson distribution


Description

Indicator with marginal Poisson distribution

Usage

mxMarginalPoisson(
  vars,
  maxCount = NA,
  lambda,
  zeroInf = 0.01,
  free = TRUE,
  labels = NA,
  lbound = 0,
  ubound = c(1, NA)
)

Arguments

vars

character vector of manifest indicators

maxCount

maximum observed count

lambda

non-negative means

zeroInf

zero inflation parameter in probability units

free

logical vector indicating whether paremeters are free

labels

character vector of parameter labels

lbound

numeric vector of lower bounds

ubound

numeric vector of upper bounds

Value

a list of MxMarginPoisson obects


OpenMx

Extended Structural Equation Modelling

v2.19.5
Apache License (== 2.0)
Authors
Steven M. Boker [aut], Michael C. Neale [aut], Hermine H. Maes [aut], Michael J. Wilde [ctb], Michael Spiegel [aut], Timothy R. Brick [aut], Ryne Estabrook [aut], Timothy C. Bates [aut], Paras Mehta [ctb], Timo von Oertzen [ctb], Ross J. Gore [aut], Michael D. Hunter [aut], Daniel C. Hackett [ctb], Julian Karch [ctb], Andreas M. Brandmaier [ctb], Joshua N. Pritikin [aut, cre], Mahsa Zahery [aut], Robert M. Kirkpatrick [aut], Yang Wang [ctb], Ben Goodrich [ctb], Charles Driver [ctb], Massachusetts Institute of Technology [cph], S. G. Johnson [cph], Association for Computing Machinery [cph], Dieter Kraft [cph], Stefan Wilhelm [cph], Sarah Medland [cph], Carl F. Falk [cph], Matt Keller [cph], Manjunath B G [cph], The Regents of the University of California [cph], Lester Ingber [cph], Wong Shao Voon [cph], Juan Palacios [cph], Jiang Yang [cph], Gael Guennebaud [cph], Jitse Niesen [cph]
Initial release
2021-03-26

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.