Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

vanWaerdenAllPairsTest

van-der-Waerden's All-Pairs Comparison Normal Scores Test


Description

Performs van-der-Waerden all-pairs comparison normal scores test.

Usage

vanWaerdenAllPairsTest(x, ...)

## Default S3 method:
vanWaerdenAllPairsTest(
  x,
  g,
  p.adjust.method = c("single-step", p.adjust.methods),
  ...
)

## S3 method for class 'formula'
vanWaerdenAllPairsTest(
  formula,
  data,
  subset,
  na.action,
  p.adjust.method = c("single-step", p.adjust.methods),
  ...
)

Arguments

x

a numeric vector of data values, or a list of numeric data vectors.

...

further arguments to be passed to or from methods.

g

a vector or factor object giving the group for the corresponding elements of "x". Ignored with a warning if "x" is a list.

p.adjust.method

method for adjusting p values (see p.adjust).

formula

a formula of the form response ~ group where response gives the data values and group a vector or factor of the corresponding groups.

data

an optional matrix or data frame (or similar: see model.frame) containing the variables in the formula formula. By default the variables are taken from environment(formula).

subset

an optional vector specifying a subset of observations to be used.

na.action

a function which indicates what should happen when the data contain NAs. Defaults to getOption("na.action").

Details

For all-pairs comparisons in an one-factorial layout with non-normally distributed residuals van-der-Waerden's normal scores transformation can be used prior to an all-pairs comparison test. A total of m = k(k-1)/2 hypotheses can be tested. The null hypothesis H_{ij}: F_i(x) = F_j(x) is tested in the two-tailed test against the alternative A_{ij}: F_i(x) \ne F_j(x), ~~ i \ne j. For p.adjust.method = "single-step" the Tukey's studentized range distribution is used to calculate p-values (see Tukey). Otherwise, the t-distribution is used for the calculation of p-values with a latter p-value adjustment as performed by p.adjust.

Value

A list with class "PMCMR" containing the following components:

method

a character string indicating what type of test was performed.

data.name

a character string giving the name(s) of the data.

statistic

lower-triangle matrix of the estimated quantiles of the pairwise test statistics.

p.value

lower-triangle matrix of the p-values for the pairwise tests.

alternative

a character string describing the alternative hypothesis.

p.adjust.method

a character string describing the method for p-value adjustment.

model

a data frame of the input data.

dist

a string that denotes the test distribution.

References

Conover, W. J., Iman, R. L. (1979) On multiple-comparisons procedures, Tech. Rep. LA-7677-MS, Los Alamos Scientific Laboratory.

van der Waerden, B. L. (1952) Order tests for the two-sample problem and their power, Indagationes Mathematicae 14, 453–458.

See Also


PMCMRplus

Calculate Pairwise Multiple Comparisons of Mean Rank Sums Extended

v1.9.0
GPL (>= 3)
Authors
Thorsten Pohlert [aut, cre] (<https://orcid.org/0000-0003-3855-3025>)
Initial release
2021-01-12

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.