Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

TotalRisk

Total risk of the return distribution


Description

The square of total risk is the sum of the square of systematic risk and the square of specific risk. Specific risk is the standard deviation of the error term in the regression equation. Both terms are annualized to calculate total risk.

Usage

TotalRisk(Ra, Rb, Rf = 0, ...)

Arguments

Ra

an xts, vector, matrix, data frame, timeSeries or zoo object of asset returns

Rb

return vector of the benchmark asset

Rf

risk free rate, in same period as your returns

...

any other passthru parameters

Details

Total Risk^2 = Systematic Risk^2 + Specific Risk^2

Author(s)

Matthieu Lestel

References

Carl Bacon, Practical portfolio performance measurement and attribution, second edition 2008 p.75

Examples

data(portfolio_bacon)
print(TotalRisk(portfolio_bacon[,1], portfolio_bacon[,2])) #expected 0.0134

data(managers)
print(TotalRisk(managers['1996',1], managers['1996',8]))
print(TotalRisk(managers['1996',1:5], managers['1996',8]))

PerformanceAnalytics

Econometric Tools for Performance and Risk Analysis

v2.0.4
GPL-2 | GPL-3
Authors
Brian G. Peterson [cre, aut, cph], Peter Carl [aut, cph], Kris Boudt [ctb, cph], Ross Bennett [ctb], Joshua Ulrich [ctb], Eric Zivot [ctb], Dries Cornilly [ctb], Eric Hung [ctb], Matthieu Lestel [ctb], Kyle Balkissoon [ctb], Diethelm Wuertz [ctb], Anthony Alexander Christidis [ctb], R. Douglas Martin [ctb], Zeheng 'Zenith' Zhou [ctb], Justin M. Shea [ctb]
Initial release
2020-02-05

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.