Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

wassermann

Partial Mantel tests on costdistance matrices


Description

This function implements the Causal modelling approach as suggested by Wassermann et al. 2010 and Cushman et al. 2010. It tests for the effect of landscape features using a cost distance matrix on the genetic structure of subpopulation/individuals.

Usage

wassermann(gen.mat, cost.mats, eucl.mat = NULL, plot = TRUE,
  nperm = 999)

Arguments

gen.mat

pairwise genetic distance matrix

cost.mats

pairwise cost distance matrix

eucl.mat

pairwise Eukclidean distance matrix

plot

switch for control plots of the partial mantel test

nperm

number of permutations for the partial mantel test

Details

Value

A table with the results of the partial mantel test. Using plot=TRUE results in diagnostic plots for the partial mantel tests.

Author(s)

Bernd Gruber (bernd.gruber@canberra.edu.au)

References

Wassermann, T.N., Cushman, S. A., Schwartz, M. K. and Wallin, D. O. (2010). Spatial scaling and multi-model inference in landscape genetics: Martes americana in northern Idaho. Landscape Ecology, 25(10), 1601-1612.

See Also

Examples

library(raster)
fric.raster <- readRDS(system.file("extdata","fric.raster.rdata", package="PopGenReport"))
glc <- genleastcost(landgen, fric.raster, "D", NN=8)
wassermann(eucl.mat = glc$eucl.mat, cost.mats = glc$cost.mats, gen.mat = glc$gen.mat)

PopGenReport

A Simple Framework to Analyse Population and Landscape Genetic Data

v3.0.4
GPL
Authors
Bernd Gruber [aut, cre], Aaron Adamack [aut]
Initial release
2019-02-04

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.