Predicted Prevalence
predicted.prevalence
calculates the observed prevalence and predicted prevalence for one or more models at one or more thresholds.
predicted.prevalence(DATA, threshold = 0.5, which.model = (1:N.models), na.rm = FALSE)
DATA |
a matrix or dataframe of observed and predicted values where each row represents one plot and where columns are:
|
||||||||||||||||||||||||
threshold |
a cutoff values between zero and one used for translating predicted probabilities into 0 /1 values, defaults to 0.5. |
||||||||||||||||||||||||
which.model |
a number indicating which models from DATA should be used |
||||||||||||||||||||||||
na.rm |
a logical indicating whether missing values should be removed |
Function will work for one model and multiple thresholds, or one threshold and multiple models, or multiple models each with their own threshold.
returns a dataframe where:
[,1] | threshold |
thresholds used for each row in the table |
[,2] | Obs.Prevalence |
this will be the same in each row |
[,3] | Model 1 |
Predicted prevalence for first model |
[,4] | Model 2 |
Predicted prevalence for second model, etc... |
Elizabeth Freeman eafreeman@fs.fed.us
data(SIM3DATA) predicted.prevalence(SIM3DATA) predicted.prevalence(SIM3DATA,threshold=11,which.model=1,na.rm=FALSE) predicted.prevalence(SIM3DATA,threshold=c(.2,.5,.7),na.rm=FALSE)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.