Gauss Copula
Functions for evaluating the Gauss copula, generating random variates and fitting.
dcopula.gauss(Udata, Sigma, log = FALSE) rcopula.gauss(n, Sigma) fit.gausscopula(Udata, ...)
log |
|
n |
|
Sigma |
|
Udata |
|
... |
ellipsis argument, passed down to |
For dcopula.gauss()
a vector of density values of length n. For
rcopula.gauss()
a n \times d matrix of random variates
and for fit.gausscopula()
a list with the optimization results.
ll <- c(0.01,0.99) BiDensPlot(func = dcopula.gauss, xpts = ll, ypts = ll, Sigma = equicorr(2, 0.5)) data <- rcopula.gauss(2000, Sigma = equicorr(d = 6, rho = 0.7)) pairs(data) ## Fitting Gauss Copula data(smi) data(ftse100) s1 <- window(ftse100, "1990-11-09", "2004-03-25") s1a <- alignDailySeries(s1) s2a <- alignDailySeries(smi) idx <- merge(s1a, s2a) r <-returns(idx) rp <- series(window(r, "1994-01-01", "2003-12-31")) rp <- rp[(rp[, 1] != 0) & (rp[, 2] !=0), ] Udata <- apply(rp, 2, edf, adjust = 1) copgauss <- fit.gausscopula(Udata)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.