Multivariate Gauss Distribution
Functions for evaluating multivariate normal density, generating random variates, fitting and testing.
dmnorm(x, mu, Sigma, log = FALSE) fit.norm(data) rmnorm(n, mu = 0, Sigma) MardiaTest(data) jointnormalTest(data, dist = c("chisquare", "beta"), plot = TRUE)
data |
|
dist |
|
log |
|
n |
|
mu |
|
plot |
|
Sigma |
|
x |
|
library(QRM) BiDensPlot(func = dmnorm, mu = c(0, 0), Sigma = equicorr(2, -0.7)) S <- equicorr(d = 3, rho = 0.7) data <- rmnorm(1000, Sigma = S) fit.norm(data) S <- equicorr(d = 10, rho = 0.6) data <- rmnorm(1000, Sigma = S) MardiaTest(data) ## Dow Jones Data data(DJ) r <- returns(DJ) stocks <- c("AXP","EK","BA","C","KO","MSFT", "HWP","INTC","JPM","DIS") ss <- window(r[, stocks], "1993-01-01", "2000-12-31") jointnormalTest(ss)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.