Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

WishartMaxPar

White Wishart Maximum Eigenvalue Centering and Scaling


Description

Centering and scaling for the maximum eigenvalue from a white Wishart matrix (sample covariance matrix) with with ndf degrees of freedom, pdim dimensions, population variance var, and order parameter beta.

Usage

WishartMaxPar(ndf, pdim, var=1, beta=1)

Arguments

ndf

the number of degrees of freedom for the Wishart matrix.

pdim

the number of dimensions (variables) for the Wishart matrix.

var

the population variance.

beta

the order parameter (1 or 2).

Details

If beta is not specified, it assumes the default value of 1. Likewise, var assumes a default of 1.

The returned values give appropriate centering and scaling for the largest eigenvalue from a white Wishart matrix so that the centered and scaled quantity converges in distribution to a Tracy-Widom random variable. We use the second-order accurate versions of the centering and scaling given in the references below.

Value

centering

gives the centering.

scaling

gives the scaling.

Author(s)

Iain M. Johnstone, Zongming Ma, Patrick O. Perry and Morteza Shahram

References

El Karoui, N. (2006). A rate of convergence result for the largest eigenvalue of complex white Wishart matrices. Annals of Probability 34, 2077–2117.

Ma, Z. (2008). Accuracy of the Tracy-Widom limit for the largest eigenvalue in white Wishart matrices. arXiv:0810.1329v1 [math.ST].

See Also


RMTstat

Distributions, Statistics and Tests derived from Random Matrix Theory

v0.3
BSD_3_clause + file LICENSE
Authors
Iain M. Johnstone, Zongming Ma, Patrick O. Perry and Morteza Shahram.
Initial release
2014-10-30

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.