Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

ROCR.xval

Data set: Artificial cross-validation data for use with ROCR


Description

A mock data set containing 10 sets of predictions and corresponding labels as would be obtained from 10-fold cross-validation.

Usage

data(ROCR.xval)

Format

A two element list. The first element, ROCR.xval$predictions, is itself a 10 element list. Each of these 10 elements is a vector of numerical predictions for each cross-validation run. Likewise, the second list entry, ROCR.xval$labels is a 10 element list in which each element is a vector of true class labels corresponding to the predictions.

Examples

# plot ROC curves for several cross-validation runs (dotted
# in grey), overlaid by the vertical average curve and boxplots
# showing the vertical spread around the average.
library(ROCR)
data(ROCR.xval)
pred <- prediction(ROCR.xval$predictions, ROCR.xval$labels)
pred
perf <- performance(pred,"tpr","fpr")
perf
plot(perf,col="grey82",lty=3)
plot(perf,lwd=3,avg="vertical",spread.estimate="boxplot",add=TRUE)

ROCR

Visualizing the Performance of Scoring Classifiers

v1.0-11
GPL (>= 2)
Authors
Tobias Sing [aut], Oliver Sander [aut], Niko Beerenwinkel [aut], Thomas Lengauer [aut], Thomas Unterthiner [ctb], Felix G.M. Ernst [cre] (<https://orcid.org/0000-0001-5064-0928>)
Initial release
2020-05-01

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.