Methods for processing sienaMeta objects
print
, summary
, and plot
methods for
sienaMeta
objects; and a function to write a LaTeX table.
## S3 method for class 'sienaMeta' print(x, file=FALSE, reportEstimates=FALSE, ...) ## S3 method for class 'sienaMeta' summary(object, file=FALSE, extra=TRUE, ...) ## S3 method for class 'summary.sienaMeta' print(x, file=FALSE, extra=TRUE, ...) ## S3 method for class 'sienaMeta' plot(x, ..., which = 1:length(x$theta), useBound=TRUE, layout = c(2,2)) meta.table(x, d=3, option=2, filename=paste(deparse(substitute(x)),'_global.tex',sep=""), align=TRUE)
object |
An object of class |
x |
An object of class |
file |
Boolean: if TRUE, sends output to file named
|
reportEstimates |
Boolean: whether to report all estimates and standard errors. |
extra |
Boolean: if TRUE, prints more information. |
which |
Set of effects contained in the plot (given by sequence numbers). |
useBound |
Boolean: whether to restict plotted symbols to the bound
used in the call of |
layout |
Vector giving number of rows and columns in the arrangement of the several panels in a rectangular array, possibly spanning multiple pages. |
d |
Number of decimals to be used in table. |
option |
1: results without normality assumptions; 2: results with normality assumptions, with confidence intervals; 3: results with normality assumptions, with standard errors. |
filename |
filename for output; if "", printed to the console. |
align |
Whether to align numbers at the decimal point. |
... |
For extra arguments (none used at present). |
The function summary.sienaMeta
prints details as for the
print
method, but also details of the sienaFit
objects
included.
Output from either can be directed to a file by using the argument
file
. It will be appended to any existing file of the same
name: projname.txt
where projname
is the value of the
argument to siena08
.
The function meta.table
writes a combined table of results
for all parameters to a LaTeX file in (as default) the current working
directory. This table is a more compact version of
the results presented by print.sienaMeta
.
The function plot.sienaMeta
plots estimates against standard
errors for each effect, with reference lines added at the two-sided
significance threshold 0.05. It returns an object of class trellis
,
of the lattice
package. Effects for which a score test
was requested are not plotted.
Another funnel plot, not using siena08
,
is available as funnelPlot
.
Ruth Ripley, Tom Snijders
T. A. B. Snijders and Chris Baerveldt. "Multilevel network study of the effects of delinquent behavior on friendship evolution". Journal of Mathematical Sociology, 27: 123–151, 2003.
See also the Siena manual and http://www.stats.ox.ac.uk/~snijders/siena/
## Not run: # A meta-analysis for three groups does not make much sense # for generalizing to a population of networks, # but it the Fisher combinations of p-values are meaningful. # But using three groups shows the idea. Group1 <- sienaDependent(array(c(N3401, HN3401), dim=c(45, 45, 2))) Group3 <- sienaDependent(array(c(N3403, HN3403), dim=c(37, 37, 2))) Group4 <- sienaDependent(array(c(N3404, HN3404), dim=c(33, 33, 2))) dataset.1 <- sienaDataCreate(Friends = Group1) dataset.3 <- sienaDataCreate(Friends = Group3) dataset.4 <- sienaDataCreate(Friends = Group4) OneAlgorithm <- sienaAlgorithmCreate(projname = "SingleGroups") effects.1 <- getEffects(dataset.1) effects.3 <- getEffects(dataset.3) effects.4 <- getEffects(dataset.4) effects.1 <- includeEffects(effects.1, transTrip) effects.1 <- setEffect(effects.1, transRecTrip, fix=TRUE, test=TRUE) effects.3 <- includeEffects(effects.3, transTrip) effects.3 <- setEffect(effects.3, transRecTrip, fix=TRUE, test=TRUE) effects.4 <- includeEffects(effects.4, transTrip) effects.4 <- setEffect(effects.4, transRecTrip, fix=TRUE, test=TRUE) ans.1 <- siena07(OneAlgorithm, data=dataset.1, effects=effects.1, batch=TRUE) ans.3 <- siena07(OneAlgorithm, data=dataset.3, effects=effects.3, batch=TRUE) ans.4 <- siena07(OneAlgorithm, data=dataset.4, effects=effects.4, batch=TRUE) ans.1 ans.3 ans.4 meta <- siena08(ans.1, ans.3, ans.4) print(meta, reportEstimates=FALSE) print(meta) summary(meta) # For specifically presenting the Fisher combinations: # First determine the number of estimated effects: (neff <- sum(sapply(meta, function(x){ifelse(is.list(x), !is.null(x$cjplus),FALSE)}))) Fishers <- t(sapply(1:neff, function(i){c(meta[[i]]$cjplus, meta[[i]]$cjminus, meta[[i]]$cjplusp, meta[[i]]$cjminusp, 2*meta[[i]]$n1 )})) Fishers <- as.data.frame(Fishers, row.names=names(meta)[1:neff]) names(Fishers) <- c('Fplus', 'Fminus', 'pplus', 'pminus', 'df') Fishers # For plotting: plo <- plot(meta, layout = c(3,1)) plo plo[3] # Show effects of bound (bounding at 0.4 is not reasonable, just for example) meta <- siena08(ans.1, ans.3, ans.4, bound=0.4) plot(meta, which=c(2,3), layout=c(2,1)) plot(meta, which=c(2,3), layout=c(2,1), useBound=FALSE) meta.table(meta, option=3, file='') ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.