Wiener Diffusion model test functions
Calculates test scores and further information for wdm
model objects.
## S3 method for class 'wdm' anova(object, ..., test="LRT") ## S3 method for class 'wdm' waldtest(object, ..., theta="delta", theta0=0)
object |
a wdm model object. |
test |
Statistical test to calculate, so far the only option is a likelihood-ratio test (LRT). |
... |
Further model objects or other arguments passed to methods. |
theta |
the name of the parameter to be tested. |
theta0 |
the value of the parameter under the null hypothesis. |
The anova.wdm
function calls the specified test and calculates the
test statistics and other information for two or more nested
wdm
model objects.
The waldtest.wdm
function can be used to conduct a Wald test for a
single parameter.
# a random dataset dat <- rbind(cbind(rwiener(100, 2,.3,.5,0), grp=factor("A", c("A","B"))), cbind(rwiener(100,2,.3,.5,1), grp=factor("B", c("A","B")))) # create nested wdm model objects (from specific to general) wdm1 <- wdm(dat) wdm2 <- wdm(dat, alpha=coef(wdm1)[1], tau=coef(wdm1)[2], beta=coef(wdm1)[3], xvar="grp") wdm3 <- wdm(dat, tau=coef(wdm1)[2], xvar="grp") # conduct LRT tests anova1 <- anova(wdm1,wdm2,wdm3) anova1 # waldtest wt1 <- waldtest(wdm1, theta="delta", theta0=0) wt1
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.