Evaluating distribution families
RFddistr(model, x, params, dim=1, ...) RFpdistr(model, q, params, dim=1, ...) RFqdistr(model, p, params, dim=1, ...) RFrdistr(model, n, params, dim=1, ...) RFdistr(model, x, q, p, n, params, dim=1, ...)
model,params |
an |
x |
the location where the density is evaluated |
q |
the location where the probability function is evaluated |
p |
the value where the quantile function is evaluated |
n |
the number of random values to be drawn |
dim |
the dimension of the vector to be drawn |
... |
for advanced use:
further options and control arguments for the simulation
that are passed to and processed by |
RFdistr
is the generic function for the 4 functions
belonging to a distribution.
as described in the arguments
Martin Schlather, schlather@math.uni-mannheim.de, https://www.wim.uni-mannheim.de/schlather/
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set ## RFoptions(seed=NA) to make them all random again ## a very toy example to understand the use model <- RRdistr(norm()) v <- 0.5 Print(RFdistr(model=model, x=v), dnorm(x=v)) Print(RFdistr(model=model, q=v), pnorm(q=v)) Print(RFdistr(model=model, p=v), qnorm(p=v)) n <- 10 r <- RFdistr(model=model, n=n, seed=0) set.seed(0); Print(r, rnorm(n=n)) ## note that a conditional covariance function given the ## random parameters is given here: model <- RMgauss(scale=exp()) for (i in 1:3) { RFoptions(seed = i + 10) readline(paste("Model no.", i, ": press return", sep="")) plot(model) readline(paste("Simulation no.", i, ": press return", sep="")) plot(RFsimulate(model, x=seq(0,10,0.1))) }
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.