Likelihood and estimation of linear models
RFloglikelihood
returns the log likelihood for Gaussian
random fields. In case NAs are given that refer to linear modeling, the
ML of the linear model is returned.
RFlikelihood(model, x, y = NULL, z = NULL, T = NULL, grid = NULL, data, params, distances, dim, likelihood, estimate_variance =NA, ...)
model,params |
object of class |
x |
vector of x coordinates, or object of class |
y,z |
optional vectors of y (z) coordinates, which should not be given if |
T |
optional vector of time coordinates, |
grid |
logical; the function finds itself the correct value in nearly all cases, so that usually |
distances,dim |
another alternative for the argument |
data |
matrix, data.frame or object of class |
estimate_variance |
logical or |
... |
for advanced use: further options and control arguments for the simulation that are passed to and processed by |
The function calculates the likelihood for data of a Gaussian process
with given covariance structure.
The covariance structure may not have NA
values in the
parameters except for a global variance. In this case the variance
is returned that maximizes the likelihood.
Additional to the covariance structure the model may include a
trend. The latter may contain unknown linear parameters.
In this case again, the unknown parameters are estimated, and returned.
RFloglikelihood
returns a list
containing the likelihood, the log likelihood, and
the global variance (if estimated – see details).
Martin Schlather, schlather@math.uni-mannheim.de, https://www.wim.uni-mannheim.de/schlather/
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set ## RFoptions(seed=NA) to make them all random again requireNamespace("mvtnorm") pts <- 4 repet <- 3 model <- RMexp() x <- runif(n=pts, min=-1, max=1) y <- runif(n=pts, min=-1, max=1) dta <- as.matrix(RFsimulate(model, x=x, y=y, n=repet, spC = FALSE)) print(cbind(x, y, dta)) print(system.time(likeli <- RFlikelihood(model, x, y, data=dta))) str(likeli, digits=8) L <- 0 C <- RFcovmatrix(model, x, y) for (i in 1:ncol(dta)) { print(system.time(dn <- mvtnorm::dmvnorm(dta[,i], mean=rep(0, nrow(dta)), sigma=C, log=TRUE))) L <- L + dn } print(L) stopifnot(all.equal(likeli$log, L)) pts <- 4 repet <- 1 trend <- 2 * sin(R.p(new="isotropic")) + 3 #trend <- RMtrend(mean=0) model <- 2 * RMexp() + trend x <- seq(0, pi, len=pts) dta <- as.matrix(RFsimulate(model, x=x, n=repet, spC = FALSE)) print(cbind(x, dta)) print(system.time(likeli <- RFlikelihood(model, x, data=dta))) str(likeli, digits=8) L <- 0 tr <- RFfctn(trend, x=x, spC = FALSE) C <- RFcovmatrix(model, x) for (i in 1:ncol(dta)) { print(system.time(dn <- mvtnorm::dmvnorm(dta[,i], mean=tr, sigma=C,log=TRUE))) L <- L + dn } print(L) stopifnot(all.equal(likeli$log, L)) pts <- c(3, 4) repet <- c(2, 3) trend <- 2 * sin(R.p(new="isotropic")) + 3 model <- 2 * RMexp() + trend x <- y <- dta <- list() for (i in 1:length(pts)) { x[[i]] <- list(x = runif(n=pts[i], min=-1, max=1), y = runif(n=pts[i], min=-1, max=1)) dta[[i]] <- as.matrix(RFsimulate(model, x=x[[i]]$x, y=x[[i]]$y, n=repet[i], spC = FALSE)) } print(system.time(likeli <- RFlikelihood(model, x, data=dta))) str(likeli, digits=8) L <- 0 for (p in 1:length(pts)) { tr <- RFfctn(trend, x=x[[p]]$x, y=x[[p]]$y,spC = FALSE) C <- RFcovmatrix(model, x=x[[p]]$x, y=x[[p]]$y) for (i in 1:ncol(dta[[p]])) { print(system.time(dn <- mvtnorm::dmvnorm(dta[[p]][,i], mean=tr, sigma=C, log=TRUE))) L <- L + dn } } print(L) stopifnot(all.equal(likeli$log, L))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.